深刺 使用深度学习纠正拼写错误 动机 该项目的灵感来自在上发表的文章。 可以在Github上找到他的代码。 2017年1月,我开始了并且从第一堂课开始就迷上了。 以前,我曾多次听到过“神经网络”一词,并且对它们可以完成的事情有一个大致的了解,但从未对它们的“工作原理”有所了解。 自完成课程以来,我没有太多机会来尝试这项技术,但是我一直在考虑它的用途,尤其是在信息检索领域,这是我过去十年来一直致力于的领域。 除非您是Google,否则纠正拼写错误的典型技术是,或者它的近亲是。 魏斯先生很好地解释了为什么这些方法效果不佳。 目标 使用Tensorflow重新实现Weiss先生的递归神经网络(RNN),并达到相同的准确性水平。 他建议尝试实施某些探索领域以及其他领域,以查看是否可以获得进一步的改进。 编码 该代码的第一部分主要涉及下载Google发布的并对其进行设置,以进行培训,而这主要是
2022-10-04 17:29:45 93.39MB deep-learning neural-network rnn spelling
1
课程导语:   人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介: 赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚新南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器
2022-09-14 17:51:08 302.58MB CNN RNN 深度学习 人工智能 迁移学习 神经网络
1
针对用电过程中的盗电窃电问题,基于数据挖掘的思想提出了一种自动检测窃电行为的方法。通过分析用户用电数据的特点,在循环神经网络(RNN)算法的基础上引入长短期记忆单元(LSTM),通过输入门、输出门与遗忘门等函数选择性地保留记忆单元的输入输出信息,改善算法训练时的梯度消失现象。将RNN网路改进为并行化网络,将长时间序列的输入特征向量进行片段化处理,克服RNN网络在处理长序列时的信息丢失缺点。使用国家电网的公开数据集进行仿真实验。结果表明,在相同的时间复杂度下,相较于传统RNN网络,改进算法对窃电行为的识别精度提升到了92.85%,模型的交叉熵损失下降为0.253,AUC增长至0.871,算法的综合性能显著提升。
2022-08-07 11:18:28 1.41MB RNN 数据挖掘 防窃电 智能电网
1
主要为大家详细介绍了基于循环神经网络(RNN)的古诗生成器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2022-07-10 14:44:35 122KB TensorFlow 神经网络 RNN 古诗生成器
1
源码中采取的NC文件(站点的风速和波高信息)(已上传)分别用LSTM和RNN模型进行训练并实验,输出散点拟合图以及预报折线图,实验预报效果较好,预报误差仅0.2m左右。源码内有注释,不明白的也可与我交流讨论,共同学习。
2022-07-07 09:12:53 207KB LSTM RNN 海浪波高预报 股票预测
Andrew Ng, Deep learning课程第五课时间序列(RNN)作业 照搬的别人的,只是为了回本。 里面既有源码(不包含答案)的,方便做作业;也有答案版本(_ans结尾),方便不会时候对答案
2022-07-01 17:55:21 147B Andrew Ng Deep Learning
1
城市人流量预测任务可以视为一个回归任务,旨在根据历史记录预 测城市各区域的人流入和流出量,进而辅助城市管理。为简化研究,将 直接对待研究的城市区域按水平和垂直划分为若干个小区域。 任务目标:利用过去六小时录得的流入流出量,预测未来一 小时、两小时和四小时的流入流出量; 数据处理:先对数据进行规范化处理;而后参考实验4,按照 任务目标对原始数据进行滑窗采样,构造训练集、验证集和 测试集,三者比例为7:1:2; 模型要求 1. 模型结构:模型应同时使用卷积神经网络(CNN、残差 结构等)和循环神经网络(RNN、LSTM、GRU等); 2. 模型优化: 1. 针对不同类型的模块应用不同的归一化操作; 2. 至少使用一次Dropout; 3. 损失函数中需添加正则化项; 4. 应用早停机制; 结论内容 1. 【表格】报告待预测的三个时间点在三种评 价指标(MAE、RMSE、MAPE)下的性能, 并用黑体标注出最佳一项; 2. 【绘图】探究使用不同正则化参数、Dropout 丢弃值以及早停忍耐值对结果的影响。 1. 模板:按此前指定的实验报告模板; 2. 要求:图文表并茂,粘贴关键的高亮代码;
2022-06-30 20:06:32 2.23MB 深度学习 rnn lstm mlp
1
了解RNN的基本单元及其改进之后,接下来我们使用RNN进行一个简单的名字生成实战来了解实际使用中需要注意的地方及要点,废话不多说。。。 目录 一、数据预处理及加载 1、数据预处理 2、数据加载 二、RNN模型搭建 三、在动态图中训练模型 四、模型预测 五、RNN模型的优化技巧 一、数据预处理及加载 这里使用的数据为一系列的英文人名,具体链接: https://pan.baidu.com/s/1pPCw_dRUXQnwH1YOsKqxXQ, 提取码: cx5w。 1、数据预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:
2022-06-23 18:04:56 143KB ens fl flow
1
本文来自于segmentfault,文章介绍了Transformer的整体结构、attention计算过程等相关内容。上图是经典的双向RNN模型,我们知道该模型是通过递归的方式运行,虽然适合对序列数据建模,但是缺点也很明显“它无法并行执行”也就无法利用GPU强大的并行能力(这里插句题外话,正因为GPU强大的并行能力,所以batch_size等于1和等于200运算时间基本差不多),再加上各种门控机制,运行速度很慢。一般而言,编码器输出编码向量C作为解码器输入,但是由于编码向量C中所有的编码器输入值贡献相同,导致序列数据越长信息丢失越多。CNN网络相比RNN网络,它虽然可以并行执行,但是无法一次捕
2022-06-22 19:40:17 914KB 即将取代RNN结构的Transformer
1
歌声分离RNN 雷茂 芝加哥大学 介绍 这是使用递归神经网络(RNN)开发的歌声分离工具。 它可以将歌手的声音和背景音乐与原始歌曲区分开。 由于分离尚不完善,因此它仍处于开发阶段。 请检查演示的性能。 依存关系 的Python 3.5 脾气暴躁的1.14 TensorFlow 1.8 RarFile 3.0 进度栏2 3.37.1 LibROSA 0.6 Matplotlib 2.1.1 档案文件 . ├── demo ├── download.py ├── evaluate.py ├── figures ├── LICENSE.md ├── main.py ├── model ├── model.py ├── preprocess.py ├── README.md ├── songs ├── statistics ├── train.py └── utils.py 数据
2022-06-22 10:48:33 62.53MB recurrent-neural-networks source-separation Python
1