环境:
tensorflow 2.1
最好用GPU
模型:
Resnet:把前一层的数据直接加到下一层里。减少数据在传播过程中过多的丢失。
SENet: 学习每一层的通道之间的关系
Inception: 每一层都用不同的核(1×1,3×3,5×5)来学习.防止因为过小的核或者过大的核而学不到图片的特征。
用Resnet ,SENet, Inceptiont网络训练Cifar10 或者Cifar 100.
训练数据:Cifar10 或者 Cifar 100
训练集上准确率:97.11%左右
验证集上准确率:90.22%左右
测试集上准确率:88.6%
训练时间在GPU上:一小时多
权重大小:21
2021-05-13 13:53:51
55KB
ar
c
ce
1