BERT-BiLSTM-CRF-NER Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning 使用谷歌的BERT模型在BLSTM-CRF模型上进行预训练用于中文命名实体识别的Tensorflow代码' 中文文档请查看 如果对您有帮助,麻烦点个star,谢谢~~ Welcome to star this repository! The Chinese training data($PATH/NERdata/) come from: The CoNLL-2003 data($PATH/NERdata/ori/) come from: The evaluation codes come from: Try to implement NER work based on google'
2021-10-17 21:06:39 482KB crf named-entity-recognition ner bert
1
用户和实体行为分析 通过深度学习进行用户和实体行为分析。 从用户的日常记录中检测用户的异常行为。 内部威胁检测 细节 所有数据均从CERT / R4.2 ( ftp://ftp.sei.cmu.edu/pub/cert-data )中提取 数据:用于检测的数据。 依赖库 python 3.63-64位 numpy的1.16.4 张量流1.8.0 keras 2.2.2 斯克莱恩0.19.1 使用情况 逐步运行python文件。 请注意,需要分别为不同的用户运行3-Action_Sequence_Training.py和4-Static_Feature_Training.py ,您可以找到user_sets并进行更改。 2-Training_Data_Generating.py还需要在两种要素类型下运行,您可以找到“类型”并进行更改。 该项目中提供的功能和深度学习模型是非常简单的示
2021-10-14 15:59:12 19.86MB Python
1
资源实现Entity Framework框架对数据的添加、修改、删除、查询包括查询部分列,以及对数据分页和排序。在压缩包中包含项目全部源码、数据库文件。
2021-10-13 15:27:23 2.32MB Entity Framework 增删查改 linq查询
1
诊所管理 诊所网络应用程序可满足要求,即患者到诊所就诊并获得注册,然后,他们会预约可用的医生。 默认情况下,约会将变为待处理状态,因为需要对其进行审核。 之后,医生将计算出病人的出勤率。 在报告下,我们应该有每日和每月的约会。 框架-库 ASP.NET MVC(版本5) 实体框架 Ninject 自动映射器 运行项目 使用Visual Studio打开项目。 在web.config文件中,根据您的系统更改连接字符串。 <add name="ClinicDB" connectionString="data source=Your data source;
1
简单的变形金刚 该库基于HuggingFace的库。 使用简单的Transformers,您可以快速训练和评估Transformer模型。 初始化模型,训练模型和评估模型仅需要三行代码。 技术支持 序列分类 代币分类(NER) 问题回答 语言模型微调 语言模型训练 语言生成 T5型号 Seq2Seq任务 多模态分类 对话式AI。 文本表示生成。 目录 设置 与conda 从安装Anaconda或Miniconda Package Manager 创建一个新的虚拟环境并安装软件包。 conda create -n st python pandas tqdm conda activate st如果使用cuda: conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch否则: conda install pytorch cpuonly
1
Google-Bert模型在医疗领域的运用,实体关系三元组抽取模型(结合网上下载的两个相关模型进行修改) 该资源仅提供模型程序(无医疗相关数据)
2021-10-05 12:06:19 383.19MB bert nlp 三元组抽取
1
cr: Entity Recognition of Traditional Chinese Medicine's Manual (https://tianchi.aliyun.com/competition/entrance/531824/information) The dataset includes 1000pcs marked data from Chinese medicine's manual. 13 kinds of entity are defined to mark the data. 本次标注数据源来自中药药品说明书,1000份训练数据,共定义了13类实体。 entity definition.xlsx terms of use.pdf
2021-09-29 18:17:36 53KB 数据集
1
Named Entity Recognition of CEMR is provided by Yidu Cloud.本数据集由医渡云提供。 subtask2_unlabeled.txt subtask1_test.zip subtask1_train.zip subtask2_test.zip subtask2_train.zip
2021-09-27 16:20:07 1.32MB 数据集
1
Agricultural Knowledge Graph 由于工作原因,该项目已停止维护。因此项目代码仅供参考,项目中包含的数据可免费用于学术等非商业用途。 相关工作请引用paper: AgriKG: An Agricultural Knowledge Graph and Its Applications[C]. DASFAA (3) 2019: 533-537 项目介绍: 本项目是上海市《农业信息服务平台及农业大数据综合利用研究》子课题《上海农业农村大数据共享服务平台建设和应用》的研究成果。 该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。 华东师范大学数据科学与工程学院(以下简称华师大数据学院)作为课题主要参与单位以实现智慧
1
EAkit 实体对齐工具包(EAkit),是许多实体对齐算法的轻量级,易于使用且高度可扩展的PyTorch实现。 算法列表来自 。 目录 设计 我们对现有的实体对齐算法进行排序并对其组成进行模块化,然后将抽象结构定义为1 Encoder-N Decoder(s) ,其中将不同的模块视为不同编码器和解码器的特定实现,以恢复算法的结构。 组织 ./EAkit ├── README.md # Doc of EAkit ├── _runs # Tensorboard log dir ├── data # Datasets. (unzip data.zip) │   └── DBP15K ├── examples
1