ISIC 2017皮肤病变图像分割公开数据集,内涵1500张训练图片,1500张训练图片标签,650张测试图片,650张测试图片标签(也可自行划分训练集与测试集)。科研小白初入图像分割领域必备数据集,深度学习模型常用!!!!小白必要数据集!!!
2024-09-28 15:40:55 20.2MB 数据集
1
题目:交通流量预测模型 背景介绍: 随着城市交通的迅速发展,交通拥堵问题日益严重。准确预测交通流量,可以帮助城市交通管理部门提前采取措施,缓解拥堵状况,提升市民出行效率。本题目旨在建立一个基于历史数据的交通流量预测模型,预测未来一段时间内的交通流量变化。 数据集: 假设你拥有某城市若干主要道路在过去一年的交通流量数据,每条道路的数据包含以下字段: 日期(Date) 时间(Time) 道路编号(Road_ID) 交通流量(Traffic_Volume) 任务: 分析交通流量数据,找出交通流量的时间规律和季节性变化。 设计一个合适的数学模型,对未来一周内每条道路的交通流量进行预测。 使用Python编程实现该模型,并对模型进行验证。
2024-09-25 20:52:58 3KB 数据集 python 编程语言
1
该数据集名为“1000万条淘宝用户行为数据数据集”,主要涵盖了大量淘宝用户的在线活动信息。作为电商分析的重要资源,这个数据集能够帮助我们深入理解消费者的购物习惯、偏好以及行为模式,从而为电商策略制定、产品推荐、市场研究等提供有价值的数据支持。 在数据集中,我们可以期待找到以下关键知识点: 1. **用户行为**: 这可能包括点击、浏览、搜索、购买、评价等多种用户在淘宝平台上的交互行为。通过对这些行为的统计和分析,可以识别出用户的购买路径,理解哪些商品或服务更吸引用户,以及用户在何时何地最活跃。 2. **时间戳信息**: 数据可能包含每条行为记录的时间信息,这有助于研究用户在一天中的不同时间段的行为模式,以及季节性或周期性的消费趋势。 3. **商品信息**: 每条用户行为可能关联特定的商品ID,这能让我们了解哪些商品受欢迎,以及用户行为与商品属性(如价格、类别、品牌)之间的关系。 4. **用户画像**: 数据集可能包含了用户的基本信息,如年龄、性别、地域等,这些信息对于构建用户画像至关重要,可以帮助商家更精准地定位目标用户群体。 5. **交易详情**: 除了用户行为,可能还包含交易的细节,如订单金额、购买数量、支付方式等,这将揭示用户的购买力和消费水平。 6. **用户反馈与评价**: 如果包含用户评价,那将有助于分析用户满意度,发现产品或服务的优势和不足,为改善客户服务提供依据。 7. **数据清洗与预处理**: 在实际分析前,数据通常需要进行清洗,处理缺失值、异常值,以及将非结构化数据转化为结构化数据。 8. **数据分析方法**: 可能涉及的分析方法有描述性统计、关联规则学习、聚类分析、时间序列分析、推荐系统等,以揭示隐藏的模式和趋势。 9. **数据可视化**: 结果可以通过图表形式展示,如用户活跃度分布图、商品销售排行、用户群体分布图等,使复杂的数据易于理解。 10. **业务应用**: 分析结果可以应用于个性化推荐、营销策略优化、库存管理、店铺运营等多个电商环节,提高运营效率和客户满意度。 这个数据集是大数据分析和机器学习项目的好素材,它可以帮助研究者或从业者提升对电商行业的洞察力,推动创新并实现商业价值。通过深入挖掘和分析,我们可以获得对用户行为的深入理解,为电商平台提供更加精准和个性化的服务。
2024-09-24 19:36:39 87.78MB 用户行为 数据集
1
亚马逊商品交易数据集,包含:用户id、商品id、评分、时间戳4个列
2024-09-24 19:16:34 16.51MB 数据集
1
农业原始数据集 1.气象数据集 字段说明 编号 日期 从2014年 ~2024年 共 10年的数据 当日最低温度 当日最高温度 湿度 取值范围 0-100 降水量 单位:毫升 风速 单位:米/秒 日照时数 小时 天气状况 晴天、雨天、阴天 数据格式 csv格式 2.农作物生长数据集 字段说明 编号 作物类型 包括: 小麦、玉米、水稻、大豆、高粱、油菜、花生、棉花 种植日期 作物开始种植的日期, 从2014年 ~2024年 共 10年的数据 收割日期 作物成熟后进行收割的日期 从2014年 ~2024年 共 10年的数据 生长期 从种植到收割的时间长度,以天为单位 产量 每公顷土地的作物产量,单位为吨 日照时长 作物生长期内每天的平均日照时长,单位为小时 降水量 作物生长期内的年降雨量,单位
2024-09-24 15:33:52 2.83MB 数据集
1
自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)自然语言处理数据集(初中和高中数学)
2024-09-23 17:18:54 1009KB 自然语言处理 人工智能 nlp
1
Delphi是一种强大的面向对象的编程语言,常用于开发桌面应用程序。在编程过程中,数值算法扮演着至关重要的角色,它们能够解决各种数学问题,包括计算、优化、预测等。本资源集合提供了一组针对Delphi开发者的常用数值算法,且附带了配套的源代码,这对于学习和应用这些算法非常有帮助。 1. **线性代数算法**:线性代数是计算科学的基础,包括矩阵运算、解线性方程组、特征值和特征向量的计算。例如,高斯消元法用于求解线性方程组,LU分解和QR分解则常用于矩阵求解和求逆。 2. **数值积分**:数值积分是估算函数在一定区间下的积分值,常见的方法有梯形法则、辛普森法则和高斯积分。在Delphi中,可以使用递归或非递归的方式来实现这些算法。 3. **数值微分**:数值微分用于估计函数的导数,这对于曲线拟合和优化问题至关重要。常见的方法包括有限差分法,如向前差分、向后差分和中心差分。 4. **优化算法**:包括一维搜索(如黄金分割法、二分查找法)、多维优化(如梯度下降法、牛顿法、拟牛顿法、遗传算法、粒子群优化等)。这些算法广泛应用于机器学习、工程设计等领域。 5. **插值与拟合**:插值用于通过已知数据点构造一个函数,使得该函数在这些点上的值与原始数据相匹配。拉格朗日插值、样条插值是常见方法。拟合则是找到最佳的函数模型来逼近数据,如最小二乘法拟合。 6. **随机数生成与统计**:在模拟和统计分析中,随机数生成是关键。Delphi提供了随机数生成器,可以配合各种分布(如均匀分布、正态分布)生成符合特定概率特性的数值。 7. **数值解微分方程**:微分方程描述了许多自然现象,如欧拉方法、龙格-库塔方法用于常微分方程的数值解,而偏微分方程的数值解则通常涉及有限差分、有限元或谱方法。 8. **排序与搜索算法**:虽然不是纯数值算法,但在处理大量数据时,快速排序、归并排序、二分查找等算法在Delphi中不可或缺。 9. **图形和图像处理**:在Delphi中,数值算法也应用于图形和图像处理,如像素操作、滤波、边缘检测等。 10. **物理和工程计算**:数值算法在物理学(如流体动力学、电磁学)和工程学(如结构分析、信号处理)中有广泛应用,如傅立叶变换、傅立叶级数等。 通过这个Delphi常用数值算法集,开发者不仅可以学习到基础的数值计算方法,还能深入了解如何在实际项目中高效地实现这些算法。配套代码使得学习过程更具实践性和可操作性,有助于提升开发者的技能和解决问题的能力。
2024-09-21 18:09:15 26.95MB
1
MSVBCRT AIO包含了微软常用的运行库,可以解决操作系统由于运行库不完整造成的软件无法安装,程序运行报错,提示缺少.dll文件等问题。 该合集包括常用的vb,vc++2005/2008/2010/2012/2013/2017/2019,Microsoft Universal C Runtime,VS 2010 Tools For Office Runtime等环境。
2024-09-21 09:40:29 66.17MB microsoft
1
数据集格式:Pascal VOC格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):184 标注数量(xml文件个数):184 标注数量(txt文件个数):184 标注类别数:1 标注类别名称:["Crocodile"] 每个类别标注的框数: Crocodile 框数 = 194 总框数=194 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2024-09-20 15:16:03 74.04MB 数据集
1
人脸面部表情识别数据集.zip 人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸
2024-09-20 14:52:47 849.41MB 数据集 深度学习 人工智能 源码
1