齿轮箱升降速过程中的振动信号包含有重要的参考信息,研究该过程中的振动信号,有助于识别齿轮箱的故障。将常规的倒谱分析技术与阶次分析相结合,提出了阶次倒谱的齿轮箱故障诊断方法。首先利用重采样技术,将时域非平稳信号转化为角域平稳信号,最后对角域重采样信号进行倒阶次谱分析,就可提取齿轮的故障特征。实验分析结果表明该方法能有效地识别齿轮的故障类型。图8,表1,参8。
2023-02-09 10:05:27 293KB 自然科学 论文
1
针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪、角域平均和连续小波变换相结合,提出了基于角域平均和连续小波变换的齿轮箱故障诊断方法。首先对齿轮箱升降速瞬态信号进行时域同步采样,再对时域信号进行等角度重采样,转化为角域平稳信号,然后对角域信号进行角域平均,以消除干扰噪声的影响,最后对角域平均信号进行连续小波变换,根据小波幅值图和相位图,就可提取齿轮的故障特征。通过对齿轮齿根裂纹故障实验信号的分析,表明该方法能有效地诊断齿轮的故障状态。
2023-02-07 10:29:32 856KB 工程技术 论文
1
本文采用振动诊断法,在对汽车发动机进行结构及其典型故障分析,以及对振动信号的时域、频域及小波包进行深入分析的基础上,针对现场实测的EQ6102汽油型发动机机体表面振动信号与气缸盖固紧螺栓振动信号,提出了该型发动机的故障诊断流程,即对所测振动信号进行相关分析,根据发动机机体振动信号的频率特性,确定出故障气缸;然后对该故障气缸进行时域分析,得出峭度参量是汽油发动机故障的敏感时域参数;接着对该故障信号进行频域分析,由随转速增加的频率图及柴油发动机的典型故障定性分析确定出该发动机的故障类型;最后对该故障信号进行小波包分析,确定该种故障的特征频带。通过上述分析确定的发动机故障敏感参量,可以为神经网络等模式识别提供较为准确的特征参量。 关键词:汽车故障诊断;神经网络;系统仿真
2023-02-04 14:10:25 3.15MB 神经网络 汽车发动机 智能诊断
1
基于状态观测器的故障诊断方法,陈晓智,,本文给出了故障诊断的基本概念和该学科研究方法的详细分类表,从数学模型的角度介绍了基于观测器的故障诊断方法,并详细推导了失
2023-01-15 09:22:46 158KB 状态估计
1
针对滚动轴承极易损伤,振动信号表现出非线性、非平稳性等特点,提出一种基于局部特征尺度分解(LCD)和改进支持向量机(SVM)的滚动轴承故障诊断算法。首先对采集到的轴承振动信号进行LCD,分解得到一系列内禀尺度分量(ISC),通过与经验模态分解(EMD)对比研究,证明了LCD方法的优越性;然后计算所有分量的能量熵值,提取出轴承信号的敏感特征集,输入到经过遗传算法(GA)进行参数优选后的SVM识别模型进行轴承状态的诊断识别。实验研究表明,基于LCD和改进SVM的轴承诊断算法能较好地提取出轴承故障特征信息,对4种轴承状态的识别率高达90%,是一种较为有效的轴承故障诊断方法。
2023-01-07 10:48:30 392KB 滚动轴承
1
大规模数字模拟电路逻辑故障诊断与可靠性设计实验报告.doc大规模数字模拟电路逻辑故障诊断与可靠性设计实验报告.doc大规模数字模拟电路逻辑故障诊断与可靠性设计实验报告.doc大规模数字模拟电路逻辑故障诊断与可靠性设计实验报告.doc大规模数字模拟电路逻辑故障诊断与可靠性设计实验报告.doc
2023-01-04 14:21:52 1.07MB 设计实现
1

利用多信号模型可简明表征系统因果关系以及盲源分离算法可提取系统本源信息的特点, 提出一种新颖有效的复合故障诊断方法. 首先, 针对复合故障下多信号模型出现冗余测试和故障模糊组的情况, 应用盲源分离算法实现测点信息的盲分离, 基于盲信号重建多信号模型的因果结构; 其次, 理论分析了该方法对复合故障具有良好的可诊断性. 轧制过程AGC系统的实验结果表明, 所提出方法对双复合故障和部分多复合故障的隔离和定位准确率可达100%.

1
基于BP神经网络的齿轮箱故障诊断
2022-12-24 15:52:46 534KB
1
滚动轴承是应用最为广泛、也是最易损坏的机械设备关键零部件之一,其状态影响着整个设备的稳定运行。因此,滚动轴承的状态监测和故障诊断一直为大家所重视。而将声发射技术应用于滚动轴承的状态监测与故障诊断,是当前研究的一个热点。 本文以声发射技术为手段,对基于声发射技术的滚动轴承状态监测与故障诊断进行了理论和实验研究,着重对滚动轴承点蚀故障的声发射诊断方法进行了详细研究。研究工作主要包括以下三个方面: 1、滚动轴承声发射信号的参数分析。采用了振铃计数、均方根、信号幅度、峭度系数等典型声发射参数对不同工况下(不同载荷、转速、故障尺寸及传播途径)滚动轴承声发射的特征及传播特性进行了分析,得出了各参数对工况变化的反应趋势及敏感性。 2、Morlet连续小波变换的参数选择。针对连续小波变换的尺度和基小波波形参数选择,提出基于遗传算法的优化选取方法,参数的优化选择有效提高了Morlet连续小波尺度谱对滚动轴承声发射信号分析的时频性能。 3、滚动轴承声发射信号的波形分析。在连续小波变换参数优化选取的基础上,对不同工况下滚动滚动轴承声发射信号进行时频分析,并结合希尔伯特谱分析,详细地分析了滚动轴承声发射的时频特性,提出了时频特征;另外,利用离散小波变换,进一步定量分析了信号时频分布。
2022-12-23 20:14:10 5.02MB 声发射 滚动轴承 故障诊断 小波变换
1
《机电设备故障诊断与排除》课程诊改报告.pdf
2022-12-20 18:26:49 184KB 文档资料
1