可变邻域搜索算法(VNS)是一种优化算法,它基于邻域的系统变化,同时在下降和扰动阶段搜索给定问题的最优解。 可变邻域搜索算法(VNS)算法是一种基于元启发式算法的全局优化技术。 它探讨了邻域变化的概念,既可以使最佳化趋势下降,也可以避开包含这些变化的山谷。
2021-11-17 19:32:21 4KB matlab
1
【TSP】基于matlab自适应动态邻域布谷鸟混合算法求解旅行商问题【含Matlab源码 1513期】.zip
2021-11-14 21:02:52 17KB
讲解https://www.cnblogs.com/jnhs/p/11325340.html 概要: opencv java swing maven netbeans 验证码去噪点 8邻域
2021-11-11 21:05:09 69KB opencv 8邻域 java  swing  maven
1
邻域粗糙集的相关学习算法可学习运行,对于研究粒度计算方面或许会有一点点用处,如有一些新的切入点可以一起探讨一下。
2021-11-10 20:37:54 9KB matlab算法
1
SAR图像变化检测可以通过对差异图的分类来实现,由于SAR图像容易受到相干斑噪声的干扰,从而影响变化检测效果。提出了一种基于空间邻域信息模糊聚类的SAR图像变化检测方法,根据对数比法和均值比法的各自特点,构造了一种新的差异图生成方法,并通过对传统的模糊聚类算法结合像素的空间邻域信息进行改进,来实现SAR图像的变化检测。实验结果表明,与传统的阈值法、模糊聚类算法以及局部邻域信息模糊C均值算法相比,提出的算法具有较高的检测精度,不但能有效地抑制噪声影响,同时能较好地保留图像细节信息。
2021-11-09 19:03:56 1.28MB 论文研究
1
传统基于邻域决策错误率的属性约简准则是针对总体分类精度的提升而设计的,未能展现因约简而引起的各类别精度变化情况。针对这一问题,引入局部邻域决策错误率以及局部属性约简的概念,其目的是提升单个类别的分类精度。在此基础上,进一步给出了求解局部邻域决策错误率约简的启发式算法。在8个UCI数据集上的实验结果表明,局部约简不仅是提高各个类别精度的有效技术手段,而且也解决了因全局约简所引起的局部分类精度下降问题。
2021-11-06 09:52:30 938KB 论文研究
1
邻域搜索算法matlab代码
2021-11-05 18:39:16 6.27MB 系统开源
1
共同近邻(CNN)聚类 笔记 该项目目前处于Alpha状态。 将来可能会更改实现。 检查示例和文档以获取最新信息。 集群 所述cnnclustering Python包提供了一个灵活的接口聚类算法使用C ommon-Ñearest-Ñeighbours。 虽然该方法可以应用于任意数据,但此实现是在“分子动力学”模拟的处理轨迹背景之前完成的。 在这种情况下,聚类结果可以作为构建核心集马尔可夫状态(cs-MSM)模型的合适基础,以捕获潜在分子过程的基本动力学。 有关用于cs-MSM估计的工具,请参考此单独的。 该软件包提供了一个主要模块: cnnclustering :(等级)共同近邻聚类和分析 特征: 灵活:可以对不同输入格式的数据集进行聚类。 易于与外部方法连接。 方便:功能集成,在分子动力学的背景下非常方便。 快速:核心功能使用Cython。 请参考以下论文以获得科学背景(如
2021-11-02 20:15:45 23.49MB JupyterNotebook
1
邻域粗糙集的属性重要度作为量度,从一个空集出发,前向贪心的选择重要度大的属性并入到约简集合,直到达到约简条件。
2021-11-02 16:49:43 23KB MATLAB 粗糙集 属性约简算法
1
MixHop和N-GCN ⠀ PyTorch实现的“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”(ICML 2019)和“一个高阶图卷积层”(NeurIPS 2018)。 抽象 最近的方法通过近似图拉普拉斯算子的本征基,将卷积层从欧几里得域推广到图结构数据。 Kipf&Welling的计算效率高且使用广泛的Graph ConvNet过度简化了逼近度,有效地将图形卷积呈现为邻域平均算子。 这种简化限制了模型学习三角算子(图拉普拉斯算子的前提)的作用。 在这项工作中,我们提出了一个新的图卷积层,该层混合了邻接矩阵的多种幂,从而使它能够学习增量算子。 我们的层展现出与GCN相同的内
2021-10-27 23:22:04 1.78MB machine-learning deep-learning tensorflow pytorch
1