MixHop-and-N-GCN:“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”的实现(ICML 2019)-源码

上传者: 42157166 | 上传时间: 2021-10-27 23:22:04 | 文件大小: 1.78MB | 文件类型: -
MixHop和N-GCN ⠀ PyTorch实现的“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”(ICML 2019)和“一个高阶图卷积层”(NeurIPS 2018)。 抽象 最近的方法通过近似图拉普拉斯算子的本征基,将卷积层从欧几里得域推广到图结构数据。 Kipf&Welling的计算效率高且使用广泛的Graph ConvNet过度简化了逼近度,有效地将图形卷积呈现为邻域平均算子。 这种简化限制了模型学习三角算子(图拉普拉斯算子的前提)的作用。 在这项工作中,我们提出了一个新的图卷积层,该层混合了邻接矩阵的多种幂,从而使它能够学习增量算子。 我们的层展现出与GCN相同的内

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明