基于多区域中心点预测的动态多目标优化算法.pdf
2023-02-10 09:57:43 977KB
1
目前的多目标优化算法有很多, Kalyanmoy Deb的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB自带的函数gamultiobj,该函数是基于NSGA-II改进的一种多目标优化算法。
2023-01-18 16:51:19 187KB matlab 多目标优化 NSGA
1
基于遗传算法的非支配排序算法(NSGA_II)是用于求解多目标规划问题的一种方法。 通过帕累托支配求解帕累托最优解可以有效得到多目标函数的求解结果。 为优化帕累托最优解,运用遗传算法对求解结果进行优化。 但同时遗传算法具有未成熟收敛、群体规模对性能影响大、结果受初始值影响较大等缺点,因此利用多种群遗传算法对求解结果进行进一步优化,运用移民算子联系各个种群,运用精华种群保存每代最优结果。 **运行程序请优先下载谢菲尔德大学的MATLAB遗传算法工具箱
1
这其实是我的期末作业,要求是基于Python人工智能算法实现的AI智能五子棋人机对弈期末大作业。上传到网上是为了造福广大计算机专业的同学们,我们在学习某一新课程或是新技术时总是需要借鉴的,尽可能让大家少走弯路希望我提供的资料能够帮助到需要帮助的友友们。 主要设计目标: 可以访问我写的专栏博客查看具体信息蛤。 https://blog.csdn.net/weixin_51989356/article/details/128537561 本系统是根据传统五子棋游戏的功能编写,其功能实现了基于AI人工智能算法实现智能的人机对弈五子棋。主要需实现如下目标: (1)Python 3.6.8环境的下的Python语言编程 (2)五子棋棋盘的设计 (3)五子棋棋子的设计 (4)电脑智能落子的实现 (5)棋局进行时的退出功能 (6)棋局胜负的判定 (7)人工智能算法的设计 (8)人工智能算法的优化 编写该项目前后共花费了我一个多星期的时间,包括大量的调研,知识点的学习,再到具体的编程开发,一整个项目流程下来确实容易身心俱疲,希望能对大家有所帮助,最后祝大家期末顺利,绝不挂科(ง •̀_•́)ง
1
人工智能实验八数码问题和罗马尼亚问题(含代码和完整实验报告) 本实验课程是计算机、智能、物联网等专业学生的一门专业课程,通过实验,帮助学生更好地掌握人工智能相关概念、技术、原理、应用等;通过实验提高学生编写实验报告、总结实验结果的能力;使学生对智能程序、智能算法等有比较深入的认识。 1.掌握人工智能中涉及的相关概念、算法。 2.熟悉人工智能中的知识表示方法; 3.熟悉盲目搜索和启发式搜索算法的应用; 4.掌握问题表示、求解及编程实现。 掌握不同搜索策略的设计思想、步骤、性能。 1.在图1,3*3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空。 图1 2.如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态(图1左)到目标状态(图1右)。 可自行设计初始3.状态。目标状态为数字从小到大按顺时针排列。 4.分别用广度优先搜索策略、深度优先搜索策略和启发式搜索算法(A*算法)求解八数码问题;分析估价函数对启发式搜索算法的影响;探究各个搜索算法的特点。 自行设计一个新的启发式函数,并分析该函数的可采纳性和优势(与启发式函数定义为“Zerind到Bu
1

将离散空间问题求解的蚁群算法引入连续空间, 针对多目标优化问题的特点, 提出一种用于求解带有约束
条件的多目标函数优化问题的蚁群算法. 该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略, 并将信息
素交流和基于全局最优经验指导两种寻优方式相结合, 用以加速算法收敛和维持群体的多样性. 通过3 组基准函数
来测试算法性能, 并与N SGA II 算法进行了仿真比较. 实验表明该方法搜索效率高, 向真实Pareto 前沿逼近的效果
好, 获得的解的散布范围广, 是一种求解多目标优化问题的有效方法.

1
智能优化算法-双层优化算法】基于双层优化算法求解多目标优化文题
2022-12-27 17:07:21 74KB matlab 算法 源码软件 开发语言
非支配排序,拥挤度计算,pareto前沿,A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II NSGA算法 NSGA算法缺陷 NSGA-II算法 总结 1. 快速非支配排序法将时间复杂度改进为O(MN2); 2.使用拥塞距离代替代替共享函数算法保持种群多样性; 引入精英保留策略。 非支配排序的复杂度较高: O(MN3) (M是目标函数的个数,N是种群大小); 缺少精英保留策略; 需要人为指定共享参数σshare(共享小生境步骤)。 NSGA: nondominated sorting genetic algorithms-非支配排序遗传算法 nondominated:非支配 例:回家,两目标(费用,时间),均越小越好 动车A(270 , 7),普快B(120 , 10),飞机C(240,2) C(240,2)支配A(270 , 7); A(270 , 7)被C(240,2)支配; B(120 , 10)和C(240,2)不可比,即非支配。 目的:得到一组非支配的解--Pareto最优解集。
2022-12-21 18:28:02 715KB 人工智能 多目标优化算法 进化算法
1
介绍了多目标优化问题的含义以及给出了多目标优化问题的数学描述。并且介绍了解决多目标优化的几种典型算法,讨论并对比了算法存在的优缺点,认为要进一步研究求解多目标优化问题的更多高效算法,若能结合各种算法的优点,处理多目标问题的效果将越来越好。
2022-12-16 15:19:47 1.63MB 多目标优化
1
基于生物启发式算法的多智能体强化学习算法,强化学习,生物启发算法
2022-12-12 11:28:44 6.22MB 强化学习 多智能体