NSGA-II多目标优化算法小白详细介绍ppt

上传者: a1920993165 | 上传时间: 2022-12-21 18:28:02 | 文件大小: 715KB | 文件类型: PPTX
非支配排序,拥挤度计算,pareto前沿,A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II NSGA算法 NSGA算法缺陷 NSGA-II算法 总结 1. 快速非支配排序法将时间复杂度改进为O(MN2); 2.使用拥塞距离代替代替共享函数算法保持种群多样性; 引入精英保留策略。 非支配排序的复杂度较高: O(MN3) (M是目标函数的个数,N是种群大小); 缺少精英保留策略; 需要人为指定共享参数σshare(共享小生境步骤)。 NSGA: nondominated sorting genetic algorithms-非支配排序遗传算法 nondominated:非支配 例:回家,两目标(费用,时间),均越小越好 动车A(270 , 7),普快B(120 , 10),飞机C(240,2) C(240,2)支配A(270 , 7); A(270 , 7)被C(240,2)支配; B(120 , 10)和C(240,2)不可比,即非支配。 目的:得到一组非支配的解--Pareto最优解集。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明