TimeSformer-Pytorch 实现,是一种基于关注点的纯净,简单的解决方案,可以在视频分类上达到SOTA。 该存储库将仅存储性能最佳的变体“时空分散注意力”,无非就是沿空间之前的时间轴的注意力。 安装 $ pip install timesformer-pytorch 用法 import torch from timesformer_pytorch import TimeSformer model = TimeSformer ( dim = 512 , image_size = 224 , patch_size = 16 , num_frames = 8 , num_classes = 10 , depth = 12 , heads = 8 , dim_head = 64 , attn_dropout =
1
本系列以通俗的方式讲解注意力机制Attention的整体知识,让i你爱上Attention的神奇应用。 资料:
2023-02-16 21:16:38 12.73MB 人工智能 深度学习 应用
1
Dmf_AttnDMF 深度矩阵分解模型 与 带注意力的深度矩阵分解模型
2023-01-05 16:49:03 326KB Python
1
Transformer部分的学习code,注意力机制。
1
Swin-Transformer-main(截止到2022年12月23日).zip
1
线课堂学生注意力识别数据集,主要检测对象为:长时间闭眼、打哈欠、凝视远方,一共19000多张线上课堂图片 线课堂学生注意力识别数据集,主要检测对象为:长时间闭眼、打哈欠、凝视远方,一共19000多张线上课堂图片 线课堂学生注意力识别数据集,主要检测对象为:长时间闭眼、打哈欠、凝视远方,一共19000多张线上课堂图片
2022-12-22 18:30:56 417.08MB 课堂 注意力 打哈欠 闭眼
自然场景下的文本检测任务是图像处理领域中的难点之一. EAST (Efficient and Accurate Scene Text detector)算法是近年来比较出色的文本检测算法, 但是增加后置处理之后的AdvancedEAST算法仍存在由于激活像素的头尾边界丢失导致的漏检情况, 对密集文本的检测效果也不是很理想. 因此提出了Dilated-Corner Attention EAST (DCA_EAST)改进算法, 对网络结构加入空洞卷积模块以及角点注意力模块, 改善了漏检情况. 针对损失函数, 加入类别权重因子和样本难度权重因子, 有效提升了密集文本的检测效果. 实验结果表明, 该算法在ICDAR2019的ReCTS数据集上准确率为93.02%, 召回率为76.69%, F-measured值为84.07%, 优于AdvancedEAST算法.
1
基于改进SSD算法(SE+特征融合)的苹果叶病虫害识别系统源码(pytorch框架)+改进前源码+病害数据集+项目说明.zip 主要改进点如下: 1、替换backbone为Resnet/MobileNet 2、添加一种更加轻量高效的特征融合方式 feature fusion module 3、添加注意力机制 (Squeeze-and-Excitation Module 和 Convolutional Block Attention Module) 4、添加一种解决正负样本不平衡的损失函数Focal Loss 附有苹果叶病害数据集,可训练模型
2022-12-07 12:27:48 90.31MB SSD 算法改进 注意力机制 SE模块
改进yolov5(多检测头+注意力机制+repvgg结构)pytorch源码+项目说明.zip 集成yolov5(v6.0), 注意力机制, 和repvgg结构 添加了多头检测代码,使用train_multiple_detection_head.py文件进行训练 添加了检测+关键点代码,使用train_key_point.py文件进行训练
深度学习算法改进(GAM注意力_STN模块_SE模块_ODConv动态卷积_FAN注意力模块实现源码+各改进说明) 1、引入了3D-permutation 与多层感知器的通道注意力和卷积空间注意力子模块 2、入了一个新的可学习模块--空间变换器,它明确地允许在网络中对数据进行空间操作。 3、重新校准通道特征反应来适应性地调整 通过明确地模拟通道之间的相互依存关系,自适应地重新校准通道的特征响应。 4、全维动态卷积(ODConv),一种更通用但更优雅的动态卷积设计 5、完全注意网络(FAN) ,它们通过结合注意通道处理设计来加强这种能力 该源码适合有一定深度学习算法基础的工程师下载学习借鉴!
2022-12-07 12:27:45 21.87MB GAM注意力 SE模块 STN模块 动态卷积