matlab优化微分方程组代码自述文件 这些数据集的目的是将它们用于在Pyhon中使用机器学习库及其派生概念验证(POC)进行测试。 由于PyTorch具有与图形处理单元或GPU一起使用的内置功能,因此我们期望在开始全面移植MRST之前进行演示,基于PyTorch GPU的张量可以显着减少储层模拟期间的计算时间。 评价概念验证 步骤如下: 找到构成MRST求解器代码的偏微分方程(PDE)。 使用Matlab和Octave测试求解器的运行时间。 最新的《使用MATLAB进行储层模拟入门》一书(Knut-Andreas Lie的Octave )中提供了一些测试代码。 见附录。 正在Matlab和Octave下测试代码的性能。 代码将发布在单独的存储库中。 使用PyTorch for GPU复制Python中的功能。 将Matlab代码转换为PyTorch 测量原始MRST求解器的计算时间。 如果在PyTorch计算时间快10到100,我们将继续将更多的Matlab代码转换为基于PyTorch张量的计算。 数据集 MRST(下载) 固相萃取9 固相萃取10 案例B4 赛格 OPM 固相萃取1
2024-09-10 15:15:19 99.4MB 系统开源
1
内容概要: 空间推理验证码数据集+完整标注 适用场景: 适用于训练空间推理验证码的目标检测模型, 我自己也基于此数据集及标注数据训练出了识别率98%以上的安某客空间推理验证码的识别模型 更多建议: 如果你是刚接触yolo目标检测模型,建议先移步我的博客主页,博客内有手把手训练的教学。
2024-09-10 14:37:23 12.15MB 目标检测 数据集
1
UCR时间序列数据集是专为时间序列分类任务设计的一个广泛使用的数据集合,它由美国加利福尼亚大学河滨分校(University of California, Riverside)的Chen, Keogh和Ratanamahatana等人创建并维护。这个数据集包含了各种不同领域的多种类型的时间序列数据,用于测试和比较时间序列分类算法的性能。时间序列分析是统计学和机器学习领域中的一个重要分支,主要关注如何在有序数据点中识别模式和趋势。 时间序列数据是按照特定时间顺序记录的数值,例如股票价格、温度读数、人体运动传感器数据等。在UCR数据集中,每个时间序列都代表一个特定的类别或事件,而分类任务就是根据这些时间序列来预测它们所属的类别。这种任务在许多实际应用中都很常见,如医学诊断、金融市场分析、工业设备故障预测等。 UCR数据集的显著特点是其多样性和复杂性。数据集包含了超过100个不同的数据集,每个数据集都具有不同的特征,如不同长度的时间序列、不同数量的类别的不平衡等。此外,数据集还经过精心设计,以确保在不同规模和难度上对分类算法进行测试。这使得UCR数据集成为评估新时间序列分类方法效果的理想选择。 深度学习在处理时间序列数据时发挥了重要作用,尤其是通过使用循环神经网络(RNNs)和长短时记忆网络(LSTMs)。这些模型能够捕捉到时间序列中的长期依赖关系,对于识别复杂的时间模式特别有效。在UCR数据集上,可以训练和评估这些深度学习模型,以优化它们在时间序列分类任务上的性能。 为了开始使用UCR数据集,你需要首先解压缩提供的"UCR数据.zip"文件,然后查阅解释文档以了解数据集的结构和各部分含义。通常,每个数据集会包含两个文件:一个用于训练,一个用于测试。数据通常以一维数组的形式表示,其中每个元素对应时间序列中的一个点。在开发和比较算法时,你可能需要将数据预处理成适合深度学习模型的格式,比如将时间序列转换为固定长度的序列或者通过填充和截断来处理不同长度的序列。 在实验过程中,你可以尝试不同的深度学习架构,调整超参数,如学习率、隐藏层大小等,以找到最佳模型。同时,由于UCR数据集中的某些数据集类别分布不均,你还需要注意评估指标的选择,比如使用宏平均(macro-average)或微平均(micro-average)F1分数,以更公平地评估算法在各个类别的表现。 UCR时间序列数据集为研究和开发时间序列分类方法提供了丰富的资源。通过深度学习技术,我们可以构建出强大的模型来处理各种类型的时间序列数据,从而在众多实际应用场景中实现高效、准确的预测。
2024-09-10 10:55:38 121.7MB 时间序列 数据集 深度学习
1
在这个“红酒数据集分析并可视化实现”的项目中,我们将探讨一个包含了1599个样本的红酒品质数据集。这个数据集共有12个特征,包括了红酒的11个理化性质以及一个质量评分(1到10的评分体系)。这些特性对于评估红酒的质量至关重要,因为它们反映了红酒的基本构成和化学特性。 我们需要导入必要的Python库,如pandas、numpy、matplotlib和seaborn,以便进行数据处理、统计分析和可视化。我们使用pandas的`read_csv`函数读取CSV文件,确保所有的列都已经被正确地解析,并且通过`head()`方法查看数据集的前几行,了解数据的基本结构。通过`shape`属性可以得知数据集包含1599行和12列,而`info()`方法则确认了没有缺失值的存在。 接下来,我们可以对数据进行基本的描述性统计分析,例如计算每个特征的计数、均值、标准差、最小值、25%分位数、50%分位数(中位数)、75%分位数和最大值。这有助于我们理解数据集的分布和集中趋势。例如,固定酸度(fixed acidity)的平均值为8.32,标准差为1.74,表明红酒的酸度在4.6到9.2之间有较大的变异;挥发性酸度(volatile acidity)的中位数为0.52,而75%分位数为0.64,这提示我们大部分红酒的挥发性酸度相对较低。 为了更深入地理解这些特征与红酒质量的关系,我们可以使用可视化工具,如matplotlib和seaborn。例如,我们可以绘制散点图来观察特定特征(如酒精含量、密度或氯化物)与质量评分之间的关系。此外,还可以创建箱线图以展示不同质量等级的红酒在各特征上的分布差异。通过颜色编码,可以清晰地看出哪些特征在不同质量等级间有显著差异。 还可以利用热力图来展示特征间的相关性。这种方法可以帮助我们识别哪些特征可能一起影响红酒的质量,或者哪些特征彼此独立。例如,如果固定酸度和挥发性酸度高度相关,那么这两个指标可能在红酒评价中具有相似的重要性。 进一步的分析可能包括使用回归模型(如线性回归、决策树或随机森林)来预测红酒质量,以及通过交叉验证和模型评估来确定最佳预测模型。我们还可以进行主成分分析(PCA)或因子分析,以减少特征的维度并发现潜在的隐藏结构。 通过可视化分析,我们可以得出关于红酒品质的洞察,比如哪些理化性质对质量评分影响最大,以及这些特性如何共同作用来决定红酒的整体质量。这些发现不仅有助于红酒生产者优化他们的酿造过程,也可能对消费者提供有价值的购买建议。 这个红酒数据集提供了丰富的信息,通过数据分析和可视化,我们可以揭示出红酒质量与其理化性质之间的复杂关系,从而深化对红酒品质的理解。
2024-09-09 18:42:11 1.6MB 数据集
1
我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
研究生医学图像处理数据集,医学相关的,全身上下分类分割都有
2024-09-06 15:20:34 224B 图像处理 数据集
1
该交通数据集来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收集一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据集还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
该交通数据集来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收集一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据集还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
在这个名为“心脏病发作预测数据集”的资源中,我们聚焦于利用数据科学和机器学习方法来预测心脏疾病的发生。数据集包含303个样本,这些样本代表了不同的心脏病患者,目的是通过分析一系列的患者特征来预测他们是否可能会发生心脏病发作。下面将详细介绍这个数据集的关键知识点以及可能涉及的相关技术。 1. **数据集构成**: 数据集由14个属性组成,每个属性代表患者的一个特定特征,例如: - **年龄**:年龄是心脏病风险的重要因素,通常随着年龄的增长,心脏病的风险会增加。 - **性别**:男性通常比女性有更高的心脏病发病率。 - **胸痛类型**:胸痛的性质和严重程度可能预示着不同类型的心脏问题。 - 其他可能的属性包括血压、胆固醇水平、血糖水平、吸烟状况、家族病史等,这些都对心脏健康有着直接影响。 2. **数据分析**: 在开始预测模型构建之前,数据分析师会进行数据探索,包括计算统计量、绘制图表和进行相关性分析,以理解各特征之间的关系和它们与心脏病发作的关联。 3. **特征工程**: 特征工程是机器学习过程中的关键步骤,可能涉及对原始数据进行转换、创建新的特征或处理缺失值。例如,将性别转换为二元变量(男性=1,女性=0),或者对连续数值进行标准化或归一化。 4. **模型选择**: 对于心脏病发作预测,可以使用多种机器学习模型,如逻辑回归、决策树、随机森林、支持向量机、神经网络等。每种模型都有其优缺点,需要根据数据特性和预测需求来选择。 5. **训练与验证**: 数据会被划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型的泛化能力。交叉验证也是评估模型性能的常用方法,它可以提供更稳定的结果。 6. **模型评估**: 常用的评估指标包括准确率、精确率、召回率、F1分数以及ROC曲线。对于不平衡数据集(如心脏病数据集,正常人少于患者),AUC-ROC和查准率-查全率曲线可能更为重要。 7. **模型调优**: 通过调整模型参数(如决策树的深度、SVM的C和γ参数等)或使用网格搜索、随机搜索等方法优化模型性能。 8. **预测与解释**: 最终模型可以用来预测新个体的心脏病发作风险,并为医生和患者提供预防建议。同时,模型解释性也很重要,比如通过特征重要性了解哪些因素对预测结果影响最大。 这个数据集为心脏病研究提供了宝贵素材,有助于研究人员和数据科学家开发更精准的预测模型,从而改善医疗诊断和预后。通过对这些数据的深入挖掘,我们可以更好地理解心脏病的发病机制,为预防和治疗提供科学依据。
2024-09-04 14:11:47 4KB 数据集 机器学习 数据分析
1
基于火龙果数据的作物生长趋势项目,通过学习,如何将你构建的AI服务部署到云端上,实现具备识别火龙果生长趋势的云服务能力。下面是我们做的任务案例: 任务1:火龙果训练数据集准备(使用精灵标注助手进行目标检测图像标注、将训练与验证数据集转tfrecord格式数据集) 任务2:目标检测模型搭建与训练(认识目标检测、 YOLOv3目标检测模型、 tensorflow YOLOv3模型训练) 任务3:生长趋势模型推理与模型评估(作物生长趋势模型推理接口、 作物生长趋势模型推理代码实现、作物生长趋势模型精度评估) 任务4:生长趋势AI模型服务封装( Restfull API、Flask环境搭建、Flask实现火龙果生长趋势AI服务) 任务5:模型云端部署与安装(生长趋势AI服务运行环境配置、编写自动化安装脚本实现服务一键安装与拉起)
2024-09-04 10:17:39 328.01MB tensorflow 人工智能 数据集 目标检测
1