台湾大学林智仁开发的支持向量机工具包,一个很适用的工具,里面有详细的使用说明
2021-12-26 18:58:42 667KB SVM
1
支持向量机是机器学习领域的研究热点之一,其理论基础是统计学习理论.该文严谨且通俗地描述了这一理论的概貌,并提出有附加信息的统计学习理论的设想.
2021-12-26 16:29:13 6.64MB 支持向量机SVM 线性分类回归
1
matlab精度检验代码 一个典型的单词分类管道包的示例。 图由 项目3:场景识别与单词袋 找到我的执行结果。 简短的 截止日期:11月18日,晚上11:59 部分您必须下载 VL Feat Matlab参考: 所需文件:results / index.md和代码/ 概述 该项目的目的是向您介绍图像识别。 具体来说,我们将从最简单的方法(微小的图像和最近的邻居分类)开始,检查场景识别的任务,然后继续研究类似于最新技术的方法,这些方法包括量化的局部特征和线性支持向量机学习的分类器。 单词袋模型是一种流行的图像分类技术,其灵感来自自然语言处理中使用的模型。 该模型会忽略或轻视单词排列(图像中的空间信息),并根据视觉单词频率的直方图进行分类。 视觉单词“词汇”是通过将大量本地特征集聚在一起而建立的。 有关具有量化特征的类别识别的更多详细信息,请参见Szeliski第14.4.1章。 此外,14.3.2讨论了词汇的创建,而14.1涵盖了分类技术。 对于这个项目,您将实现一个基本的单词袋模型,并且有很多机会获得额外的信誉。 通过在15个场景数据库(在上引入,尽管建立在先前发布的数据集之上)上的训
2021-12-26 13:38:22 92.65MB 系统开源
1
matlab14 基于SVM的数据分类预测——意大利葡萄酒种类识别
2021-12-26 13:21:57 37KB
1
基于OpenCV实现口罩检测功能,可以实时检测人脸是否佩戴口罩,并使用QT设计GUI界面。需要环境:openVINO(加速)、OpenCV4、QT5
2021-12-25 18:25:02 4.94MB 口罩检测 OpenCV QT SVM
1
sex_classifier_dlib_transfer_learning 使用dlib人脸识别模型作为特征提取器的性别分类器的简单演示 通过使用dlib人脸识别模型,我们可以使用sklearn ML框架进行转移学习以对人脸性别进行分类。 由于缺乏公开的亚洲性别数据集,该过渡数据集全是亚洲人。 但是,我有很多私人照片,因此我不会共享数据集。 如果您自己被trainig迷住了,则可以使用Google照片搜寻器下载图像并标记自己的名字 如果您想使用,我还提供了简单的预训练模型。 这是评估指标 precision recall f1-score su
2021-12-25 16:30:40 647KB python svm scikit-learn face-recognition
1
迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题. 当与某领域相关的新领域出现时, 若重新标注新领域, 则样本代价昂贵, 丢弃所有旧领域数据又十分浪费. 对此, 基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM, 通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型, 该方法既继承了基于经验风险最小化最大间隔SVM的优点, 又弥补了传统SVM不能进行知识迁移的缺陷. 实验结果验证了该算法的有效性.
2021-12-24 13:29:10 383KB 迁移学习|分类|支持向量机
1
人工智能课程作业,工具为 jupyter notebook,使用SVM对手写体数字图片分类,其中包含运行代码,运行截图,内容涵盖完整。
1