Python把excel中的内容批量替换到word中 需要把excel里表格的数据复制到word文档中,比如excel中的公司名称,联系人等,所以就为了减少经常处理这些文档,故通过程序减少这些工作量, 说明 1.excel不能合并单元格 2.excel表头必须是第一行,并且不能为空 3.excel中第一列的数据作为导出word文件名,或者在表头定义【文件名】列 4.word只支持.docx,excel只支持.xls/.xlsx 格式 5.word模板占位符格式:{xxx},xxx:是excel中表头列的名字
2024-04-29 09:38:07 3KB python
1
Python合法网页爬虫工具项目分享 内容概览: 这个分享包涵了我开发的Python爬虫工具项目,主要用于合法爬取某些网页信息。以下是主要内容: 源代码:包括Python代码和相关脚本。这些代码展示了如何使用Python进行网页抓取、解析和数据提取。 项目文件:除了代码,我还分享了整个项目的文件,包括设计稿、图标、图片等资源。这些资源对于理解项目背景和设计思路至关重要。 文档与操作手册:为了方便他人理解和使用我的作品,我编写了详细的操作手册和使用说明,同时提供了一份Markdown格式的文档,概述了项目的主要功能和特点。 学习笔记:在项目开发过程中,我记录了大量的学习笔记和心得体会。这些笔记不仅有助于理解项目的开发过程,还能为学习Python爬虫技术提供宝贵的参考资料。 适用人群: 这份项目合集适用于所有对Python爬虫开发感兴趣的人,无论你是学生、初学者还是有一定经验的开发者。无论你是想学习新的技术,还是想了解一个完整的项目开发流程,这份资料都将为你提供极大的帮助。 使用建议: 按部就班地学习:建议从基础的Python爬虫开发开始,逐步深入到实际应用中。通过实践,逐步掌握Python爬虫开发的各项技能。 参考项目文件和笔记:项目文件和笔记提供了丰富的背景信息和开发经验。在学习的过程中,不妨参考这些资料,以帮助你更好地理解和学习。 动手实践:Python爬虫开发是一门实践性很强的技能。通过实际操作,你可以更好地掌握Python爬虫开发的各项技能,并提高自己的实践能力。Python合法网页爬虫工具项目分享 内容概览: 这个分享包涵了我开发的Python爬虫工具项目,主要用于合法爬取某些网页信息。以下是主要内容: 源代码:包括Python代码和相关脚本。这些代码展示了如何使用Python进行网页抓取、解析和数据提取。 项目文件:除了代码,我还分享了整个项目的文件,包括设计稿、图标、图片等资源。这些资源对于理解项目背景和设计思路至关重要。 文档与操作手册:为了方便他人理解和使用我的作品,我编写了详细的操作手册和使用说明,同时提供了一份Markdown格式的文档,概述了项目的主要功能和特点。 学习笔记:在项目开发过程中,我记录了大量的学习笔记和心得体会。这些笔记不仅有助于理解项目的开发过程,还能为学习Python爬虫技术提供宝贵的参考资料。 适用人群: 这份项目合集适用于所有对Python爬虫开发感兴趣的人,无论你是学生、初学者还是有一定经验的开发者。无论你是想学习新的技术,还是想了解一个完整的项目开发流程,这份资料都将为你提供极大的帮助。 使用建议: 按部就班地学习:建议从基础的Python爬虫开发开始,逐步深入到实际应用中。通过实践,逐步掌握Python爬虫开发的各项技能。 参考项目文件和笔记:项目文件和笔记提供了丰富的背景信息和开发经验。在学习的过程中,不妨参考这些资料,以帮助你更好地理解和学习。 动手实践:Python爬虫开发是一门实践性很强的技能。通过实际操作,你可以更好地掌握Python爬虫开发的各项技能,并提高自己的实践能力。Python合法网页爬虫工具项目分享 内容概览: 这个分享包涵了我开发的Python爬虫工具项目,主要用于合法爬取某些网页信息。以下是主要内容: 源代码:包括Python代码和相关脚本。这些代码展示了如何使用Python进行网页抓取、解析和数据提取。 项目文件:除了代码,我还分享了整个项目的文件,包括设计稿、图标、图片等资源。这些资源对于理解项目背景和设计思路至关重要。 文档与操作手册:为了方便他人理解和使用我的作品,我编写了详细的操作手册和使用说明,同时提供了一份Markdown格式的文档,概述了项目的主要功能和特点。 学习笔记:在项目开发过程中,我记录了大量的学习笔记和心得体会。这些笔记不仅有助于理解项目的开发过程,还能为学习Python爬虫技术提供宝贵的参考资料。 适用人群: 这份项目合集适用于所有对Python爬虫开发感兴趣的人,无论你是学生、初学者还是有一定经验的开发者。无论你是想学习新的技术,还是想了解一个完整的项目开发流程,这份资料都将为你提供极大的帮助。 使用建议: 按部就班地学习:建议从基础的Python爬虫开发开始,逐步深入到实际应用中。通过实践,逐步掌握Python爬虫开发的各项技能。 参考项目文件和笔记:项目文件和笔记提供了丰富的背景信息和开发经验。在学习的过程中,不妨参考这些资料,以帮助你更好地理解和学习。 动手实践:Python爬虫开发是一门实践性很强的技能。通过实际操作,你可以更好地掌握Python爬虫开发的各项技能,并提高自己的实践能力。Python合法网页爬虫工具项目分享 内容概览: 这个分享包涵了我开发的Python爬虫工
2024-04-28 22:24:16 3KB Python 脚本 爬虫 项目
1
基于大数据反电信诈骗管理系统是一个高级的Python项目,旨在通过分析海量通信数据来识别和预防电信诈骗活动。该系统结合了大数据分析、自然语言处理(NLP)、机器学习等技术,以提高检测诈骗电话和短信的准确性。 主要功能可能包括: 1. **实时监控与分析**:系统能够实时收集并分析通话记录和短信内容,使用预定义的规则和模式识别潜在的诈骗行为。 2. **智能报告系统**:生成关于可疑通信行为的报告,包括时间、频率、通信双方等信息,供进一步分析和调查。 3. **用户反馈机制**:允许用户标记和报告诈骗电话或短信,系统据此更新诈骗数据库和检测规则。 4. **风险评估模型**:构建风险评估模型,根据历史数据和行为模式预测单个电话号码或短信的诈骗概率。 5. **教育和预防措施**:提供教育用户的模块,普及如何识别和防范电信诈骗的知识。 6. **接口友好的管理平台**:提供一个易于使用的Web界面,让管理人员可以轻松地查看分析结果、管理报告和调整系统设置。 技术栈通常涉及: - Python编程语言:作为主要的后端逻辑和数据处理工具。 - 数据库技术:如MySQL、PostgreSQL或MongoDB,用于存储通信日志和诈骗数据库。 - 前端技术:HTML, CSS, JavaScript以及框架(如React或Vue.js),用于构建用户界面。 - 机器学习库:如scikit-learn或TensorFlow,用于构建和训练诈骗检测模型。 - NLP工具:如NLTK或Spacy,用于分析短信内容和识别诈骗语言模式。 部署方式可能包括: - 本地部署:在内部网络中配置环境运行系统,确保数据安全性。 - 云服务部署:利用云服务提供商的可扩展性和高可用性优势进行托管。 该系统对于提高公众对电信诈骗的防范意识、减少诈骗成功率具有重要作用。同时,它为电信运营商、安全机构和金融机构提供了一个强有力的工具来保护其客户不受诈骗活动的侵害。通过大数据分析和机器学习,系统能够不断学习和适应新的诈骗手段,从而持续提升防护能力。
2024-04-28 21:11:15 46.24MB 课程设计 项目源码 python
首先贴一张验证码上来做案例: 第一步先通过二值化处理把干扰线去掉: from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): # 打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L') # 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256): if j<
2024-04-28 18:28:19 112KB data pixel python
1
flameTimewarpML 适用于Autodesk Flame的机器学习框架插值工具。 基于arXiv2020-RIFE,原始实现: : @article{huang2020rife, title={RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation}, author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang}, journal={arXiv preprint arXiv:2011.06294}, year={2020} } 来自Julik Tarkhanov的Flame动画曲线插值代码: : 安装 单工作站/易于安装 从“页面下载最新发
2024-04-28 17:36:33 207MB Python
1
详细功能需求描述:( 登录注册功能 个人信息【(姓名,性别,年纪,电话号,积分(初始为零))积分类似于信誉分用户和司机都有且能看到 除了完成订单可以累积,只有管理员可以能操作】 信息查询【可看到自己的信息,与当前积分】 预约车辆(可以预约车辆) 订单管理 (可以对下过的订单进行查看) 服务投诉,(用户可以对乘坐过的车辆投诉) 管理员 登录 司机管理 出租车管理 用户管理(当前用户违规可以扣除积分) 积分管理(可以看到当前所有人的积分) 预约管理(可以查看) 投诉管理(对用户的投诉进行审核) 司机 注册登录 信息查询【可看到自己的信息,与当前积分】 预约管理可以接受与拒绝预约(可以预约车辆) 订单管理 (可以对自己完成的订单进行查看) 服务投诉(只能看到被投诉原因) DCX希望数据库表名前都有这三个字母
2024-04-28 15:14:47 4.56MB java mysql redis bootstrap
1
b站全称哔哩哔哩,是中国最大的ACG动漫网站,也是中国目前事实上最大的线上宅文化社区。 其中动漫通常以一个季度播出,因而被称为番剧。涉及题材范围广,有奇幻,日常,战斗等。一部番剧上线后,在一段时间内追番人数将上升并维持在某个值内,因此追番人数能够反应观看人数。观看后观众可进行打分,范围在0到10之间,打分分数将作为评价一部番剧重要的依据。分析历年动漫数据,可以了解到b站ACG和动漫文化发展状况 本资源主要爬取总榜获得各个动漫粗略信息以及直达链接,再访问每个动漫对应链接获取详细信息。 资源中包含了爬虫代码、数据处理代码、数据分析代码,也包含了爬取数据集、可视化结果图,同时资源中也提供了一个对本项目进行简单介绍的readme文件,其中包含了对爬虫细节以及数据处理、数据分析、数据可视化的详细介绍。 本资源可以作为python爬虫入门的参考资源进行学习。
2024-04-28 14:09:43 3.57MB python 爬虫 数据分析
1
三维点云机器学习检测定位圆心,拟合轴线(基于open3d和python)对应点云数据,可直接open3d读取,点云颜色为全白,包含xyzrgb
2024-04-28 11:07:17 611KB 机器学习 python open3d
1
1.项目利用Python爬虫技术,通过网络爬取验证码图片,并通过一系列的处理步骤,包括去噪和分割,以实现对验证码的识别和准确性验证。 2.项目运行环境:Python环境:需要Python 2.7配置,在Windows环境下下载Anaconda完成Python所需的配置,下载地址为https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 3.项目包括4个模块:数据爬取、去噪与分割、模型训练及保存、准确率验证。用request库爬虫抓取验证码1200张,并做好标注。图片爬取成功后进行去噪与分割。处理数据后拆分训练集和测试集,训练并保存。模型保存后,可以被重新使用,也可以移植到其他环境中使用。 4.准确率评估:测试结果精度达到99%以上。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131571160
2024-04-28 10:40:57 23.11MB python 爬虫 机器学习 验证码识别
1
python-j1939 汽车工程师协会标准SAE J1939是在车辆部件之间进行通信和诊断的车辆总线推荐做法。 它起源于美国的汽车和重型卡车行业,现已在世界其他地区广泛使用。 SAE J1939在商用车领域用于整个车辆的通信,其物理层在ISO 11898中定义。在拖拉机和拖车之间使用不同的物理层(在ISO 11992中指定)。 该软件包依赖于Brian Thorne多年来维护的项目,该项目是该项目的一部分,并且从该项目中脱颖而出。 该编码目前与python-can版本3.3.2兼容。 克隆python-can仓库后,请务必签出“ release-3.3.2”分支 ontroller甲REAÑetwork的C是设计成允许微控制器和设备彼此通信的总线标准。 它具有基于优先级的总线仲裁,可靠的确定性通信。 它用于汽车,卡车,轮船,轮椅等。 can包为Python开发人员提供了控制器区
2024-04-28 10:30:10 38KB Python
1