Kaggle-EEG:使用机器学习从EEG数据中预测癫痫发作。 KaggleUni墨尔本癫痫发作预测比赛第三名
2022-03-08 15:28:40 764KB machine-learning matlab svm kaggle
1
支持向量机SVM和核函数的matlab程序集
2022-03-06 23:16:57 455KB matlab
1
是高级统计学的题,用MATLAB进行运算的代码,里面涉及主成分分析、聚类分析、SVM拟合、SVM分类.
2022-03-06 14:08:20 610KB 主成分分析 SVM 聚类
1
半监督的svm 数据科学分配解决方案。 使用支持向量机作为基础分类器的半监督分类器的实现。 该数据集是在代码中随机生成的。 依存关系: 麻木 斯克莱恩 分类问题 给定数据: 大量未标记的数据 少量标注数据 能够正确标记未标记数据集中任何样本的人类专家,其费用与新标记样本的数量成正比 目标: 降低成本 提高分类器的准确性 解决方案 该解决方案将具有最高置信度的预测标签添加到标签数据集中。 置信度最低的标签表明分类器需要人工专家的帮助。 这些真实的标签将添加到数据集中,并且成本会增加。 人类专家的提示数量不能超过标记样本的初始数量-标记数据的数量只能加倍。 如果准确性为100%,成本达到先前说明的限制或没有将任何样本添加到标记的数据集中,则算法终止。 例子 设置: 数据集:10000个样本,3个类,每个类2个类,3个信息性特征。 最大限度。 迭代次数:100 数据集中未标记数据的
2022-03-06 11:48:49 2KB Python
1
非线性SVM分类器设计,不同核函数下的样本数据分类图,matlab代码简单易懂
2022-03-05 19:54:47 236KB 相关向量机
1
由于风电存在着不确定性,风电功率预测对于接入大量风电的电力系统意义重大。为了提高风电功率的预测精度,本文建立了基于经验模式分解法(EMD)与支持向量机(SVM)的复合预测模型。考虑到风力机组的输出有很强的非线性,该模型首先将训练数据按风速大小分成高、中、低3组,然后对各组的风电功率样本序列进行经验模式分解,并建立各个频带分量的支持向量机预测模型,各模型的预测结果等权求和即得到最终的功率预测值。使用风电场现场采集数据的预测结果,验证了该方法的可行性和有效性。
2022-03-05 16:32:37 628KB 自然科学 论文
1
SVM案例(包括数据集)
2022-03-05 16:12:49 732KB SVM 分类模型
1
HOG描述符 在matlab中实现HOG(梯度直方图)特征提取。 此源代码最初来自[1] 我进行了一些更改,以便您可以直接运行hogtest.m进行测试。 HOG描述符的详细说明也可以在以下参考文献中找到。 [2] ; [3] 。
2022-03-05 14:28:37 408KB MATLAB
1
opencv_train_svm 一些使用 HOG HuMoment 特征训练 svm 字符预测器的代码
2022-03-04 12:30:38 4KB C++
1