数据挖掘分析
2023-01-09 14:07:37 1.59MB 数据挖掘 课程作业
1
建立了一种基于神经网络的交通流量动态预测模型,分别采用BP神经网络和径向基网络(RBF)建立了预测模型,给出了数据预处理方法和预测模型评价指标.仿真结果表明该交通流量预测方法的有效性,结果分析得出径向基网络能够更加快速有效的进行城市交通流预测。
2023-01-07 20:51:28 322KB 神经网络 交通流 预测模型
1
该子系统模块使用移动平均算法根据 5 个过去的输入预测 4 个未来输出。
2023-01-06 14:21:43 10KB matlab
1
PHM2012滚动轴承全寿命数据集的特征提取环节,提取具有物理意义的统计特征。包含时十几个域、频域等的统计特征提取。最后保存的数据形式是numpy的数据格式
1
神经网络能以任意精度逼近非线性函数,以神经网络为基础的时间序列预测模型能很好地反映信息的非线性发展趋势。该文在分析传统BP网络缺点的基础上,用具有良好全局搜索能力的遗传算法来改进神经网络。详细讨论了GA算法的优化神经网络初始权值和阈值的思想和理论。在阐述预测方法同时,用具体例证分析了GA-BP网络预测的性能和特点。结果表明,基于GA-BP神经网络在预测精度和适应性方面高于传统的BP神经网络。
2023-01-04 21:13:59 336KB 自然科学 论文
1
【电力负荷预测】 GUI粒子群支持向量机短期电力负荷预测【含Matlab源码 751期】.zip
2023-01-04 20:54:33 124KB
1
Python心脏衰竭分类器 这是kaggle提供的一项任务,其中包括创建一个分类器算法,该算法可以使用血液信息和其他一些功能来预测心脏病发作。 在这个项目中,我尝试了3种不同的机器学习模型,即随机森林分类器,SVC和Logistic回归器,其中两个在数据框中运行良好,但是SVC无法正常工作,因此我决定将其从笔记本中删除,在这个项目中,我专注于数据分析,但是缺少功能工程。 同样在这个项目中,我还没有开始使用github,所以我再次希望你理解这一点并下载数据以运行代码。
2023-01-04 19:45:22 170KB JupyterNotebook
1
MATLAB实现LSTM长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
针对现有剩余寿命预测研究中需要多个同类设备历史数据离线估计模型参数的问题,本文提出了一种基于退化数据建模的服役设备剩余寿命自适应预测方法. 该方法,利用指数随机退化模型来建模设备的退化过程,基于退化监测数据运用Bayesian 方法更新模型的随机参数,进而得到剩余寿命的概率分布函数及点估计. 区别于现有方法,本文方法基于设备到当前时刻的监测数据,利用期望最大化算法对模型中的非随机未知参数进行在线估计,由此.无需多个同类设备历史数据. 最后,通过数值仿真与实例分析,验证了本文方法在剩余寿命预测时的有效性.
2023-01-04 16:58:13 1.33MB 寿命预测; 退化; Bayesian 方法;
1