改进极限学习机的不同类型滑坡位移预测

上传者: 38707217 | 上传时间: 2024-01-11 16:28:29 | 文件大小: 525KB | 文件类型: PDF
针对经典智能算法用于滑坡位移预测时存在的网络结构参数选取复杂、易陷入局部极小等缺陷,提出了基于改进极限学习机ELM(Extreme Learning Machine)的滑坡位移预测模型。在滑坡变形位移状态辨识基础上,根据其位移变化特征,将滑坡位移曲线类型划分减速-匀速型、匀速-增速型、减速-匀速-增速型、复合型4类,将改进的ELM算法分别用于4种不同类型的滑坡位移预测。基于改进ELM算法构建滑坡位移预测模型时,采用二值区间搜索算法选定最佳隐含层神经元个数和激励函数,并融入数据滚动建模思想,以期提高网络泛化能力和预测精度。以链子崖、卧龙寺、古树屋、新滩滑坡体为例,对ELM预测的适用性进行讨论,实验结果表明,基于ELM构建不同类型滑坡位移预测模型时,具有较高的预测精度,且在网络学习速度等方面优势明显,适用于复杂状况下滑坡体的位移预测。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明