本题库均来自海量真实校招面试题目大数据进行的整理,学完这个题库,把此题库都理解透彻应对各家企业面试完全没有问题。
2021-03-20 19:18:38 4.32MB 机器学习 面试笔试 算法
1
云计算中基于SVM的大规模数据流增量学习算法
2021-03-16 14:06:58 546KB 研究论文
1
分析了支持向量的性质和增量学习过程,提出了一种新的增量学习算法,舍弃了对最终分类无用的样本,在保证测试精度的同时减少了训练时间。最后的数值实验和应用实例说明该算法是可行、有效的。
1
一种新颖的监督竞争学习算法
2021-03-14 10:05:24 1.11MB 研究论文
1
国内最新的最优化方面著作简版
2021-03-13 20:12:02 3.31MB 最优化 机器学习 深度学习 算法
1
行人检测在视觉监控,驾驶员辅助系统中具有广泛的应用。 它在计算机视觉和模式识别中也非常重要。 在我们的研究中,我们提出了行人检测的多尺度方案。 行人检测方案包括构建强分类器和多尺度检测的两个步骤。 强分类器是弱分类器的集合,是通过使用基于类似Harr特征的AdaBoost学习算法构建的。 然后,采用强分类器对多尺度图像中的行人进行检测,并对检测结果进行合并。 在我们的实验中,提出的多尺度检测方案在灵敏度达到89.3%的情况下每张图像报告了0.35个假阳性。 这表明行人检测的多尺度方案实现了高性能。
2021-03-12 09:08:05 449KB Haar-like features; AdaBoost learning
1
Numpy:科学计算库 Pandas:数据分析处理库 Matplotlib:数据可视化库 Scikit-learn:机器学习库
2021-03-09 19:09:23 9.87MB 机器学习 算法
1
机器学习参考资料及教学视频
2021-03-08 13:06:35 158.54MB 机器学习 算法
1
近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率 图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不 断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,结合 GoogleNet 思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 使 用 3 种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提 取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个 由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取 单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合 3 种卷积核提取 的特征信息,经过降维处理后与 3 × 3 像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得 到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端 的学习方法使得训练更加迅速。使用两个客观评价标准 PSNR( peak signal-to-noise ratio) 和 SSIM( structural similarity index) 对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本算法在 Set5 等 多个测试数据集中的表现相比于插值法和 SRCNN 算法,在放大 3 倍时效果提升约 3. 4 dB 和 1. 1 dB,在放大 4 倍时提 升约 3. 5 dB 和1. 4 dB
2021-03-07 19:12:38 787KB 超分辨率 深度学习 算法 图像处理
1
经典K-SVD程序,字典学习的好范本,初学者可以参考学习,注释很全。
2021-03-06 16:37:27 3KB K-SVD Ditionary Learning
1