Slim GAIN(SGAIN)的pytorch代码实现,可参考文章:https://blog.csdn.net/didi_ya/article/details/125459154
2022-06-28 09:13:06 195KB 神经网络 深度学习 pytorch python
NVIDIA CUDA深度神经网络库 (cuDNN) 是经GPU加速的深度神经网络基元库。cuDNN可大幅优化标准例程(例如用于前向传播和反向传播的卷积层、池化层、归一化层和激活层)的实施。 世界各地的深度学习研究人员和框架开发者都依赖cuDNN实现高性能GPU加速。借助 cuDNN,研究人员和开发者可以专注于训练神经网络及开发软件应用,而不必花时间进行低层级的GPU性能调整。cuDNN可加速广泛应用的深度学习框架,包括 Caffe2、Chainer、Keras、MATLAB、MxNet、PyTorch 和 TensorFlow。
2022-06-28 09:13:04 653.19MB cudnn cuda linux pytorch
1
网上看到一个使用opencv读取图片然后计算数据集的均值和标准差的,但是那个读取图片后把图片的每个值append到一个列表,要是数据集大的话内存真的会爆掉的啊,所以借助网上另一个使用pytorch的数据读取方式来计算的,原文https://www.cnblogs.com/wanghui-garcia/p/11448460.html 这篇是分别计算了训练集、测试集和验证集数据的均值和标准差并将均值和标准差保存到了一个文件中,我不需要那样子,我只需要计算我总数据集的均值标准差并输出就好了,所以做了一点修改。 首先说一下我的文件夹格式,没有分训练集测试集啥的,就是一个文件夹下面分类别放 ‘/home
2022-06-27 15:59:30 43KB al c data
1
PyTorch模块的FLOPS计数 用法 通过更改main.py第13行来加载模型 运行python main.py 参考
2022-06-27 08:35:17 2KB pytorch flops flops-counter Python
1
pytorchB站小土堆视频学习自写文档,pytorch入门可看
2022-06-26 11:07:31 6.1MB pytorch
1
参考视频B站小土堆pytorch自写代码及备注 内有需要的数据集
2022-06-26 09:08:30 253.6MB pytorch
1
YOLOv3-pytorch版源代码
2022-06-25 19:09:07 2.69MB YOLOv3 pytorch
1
YOLOv4-pytorch 版源代码
2022-06-25 19:09:06 718KB YOLOv4 pytorch
1
带注释的StarGAN v2 我对StarGAN v2的推动,用于个人学习 原作: 论文: : GitHub: : 原始文件 StarGAN v2-官方文档 StarGAN v2:多个域的多样化图像合成*,* *,*,在CVPR 2020中。(*表示相等的贡献) 论文: : 视频: : 摘要:良好的图像到图像转换模型应学习不同视觉域之间的映射,同时满足以下属性:1)生成图像的多样性和2)在多个域上的可伸缩性。 现有方法解决了其中一个问题,即对于所有域而言,其多样性有限或具有多个模型。 我们提出了StarGAN v2,这是一个可以同时解决这两个问题的框架,并且在基线之上显示出明显改善的结果。 在CelebA-HQ和新的动物面Kong数据集(AFHQ)上进行的实验验证了我们在视觉质量,多样性和可伸缩性方面的优越性。 为了更好地评估图像到图像的翻译模型,我们发布了AFH
2022-06-25 02:21:40 28.02MB JupyterNotebook
1
贸易协定 该存储库是论文pytorch版本。 介绍 T-TA或T基于ransformer-T EXT一个utoencoder,是监督学习任务的新深双向语言模型。 T-TA学习了直接的学习目标,即语言自动编码,该功能可以只使用上下文自动预测句子中的所有标记。 与“掩蔽语言模型”不同,T-TA具有自掩蔽机制,以避免仅将输入复制到输出。 与BERT(用于微调整个预先训练的模型)不同,T-TA特别有利于获得上下文嵌入,这些嵌入是从训练的语言模型的隐藏层生成的每个输入令牌的固定表示。 T-TA模型体系结构基于模型体系结构,而模型体系结构主要是标准的体系结构。 这段代码基于,其中包括用于构建自定义词汇表,准备Wikipedia数据集等的方法。 用法 from tta . modeling_tta import TTALMModel from transformers import AutoToken
2022-06-24 11:22:56 9KB Python
1