基于STM32单片机的温室大棚监测系统,旨在提高我国农业温室的自动化和管理水平,满足现代农业对高效率和高质量生产的需求。该系统通过集成先进的传感技术,实现对温室内环境参数如温湿度、光照强度及酸碱度等的实时监控,确保温室条件最适合作物生长。STM32F103C6T6单片机作为系统的核心,处理传感器收集的数据,并通过算法分析,为农户提供准确的环境评估和调控建议。
2024-08-02 21:12:07 10.81MB stm32
1
: 为提高农业大棚种植效率、减少管理成本,设计了远程监控系统,用于对温湿度、光照 强度、土壤电导率和盐度等农作物生长环境参数进行监控.本地端以STM32单片机为核心,使用 Modbus-RTU 协议对大棚内部环境参数进行采集,根据传感器返回的数据以一定决策通过控制继电 器的方式使大棚内部的环境参数维持在适合农作物生长的范围内,同时系统可实现自动/手动切换 控制.以RGB触摸屏为交互界面,使用ESP8266与远端(PC机)进行通信.远端使用QT开发平台实 现对大棚内部环境参数的远程监视.经过软硬件测试,系统具有安全、稳定、低成本等优点,可以保 证大棚内部的环境维持在适合作物生长的水平. ### 基于STM32和QT平台的农业大棚远程监控系统设计 #### 系统概述 本系统设计旨在提高农业大棚种植效率、降低管理成本,通过构建远程监控系统来监测农业大棚内的环境参数,包括温湿度、光照强度、土壤电导率和盐度等,确保农作物能在最佳条件下生长。 #### 关键技术与组件 - **STM32单片机**:作为本地端的核心控制器,负责数据采集与处理。 - **Modbus-RTU协议**:用于传感器与STM32之间的通信,简化了数据交换过程。 - **继电器控制**:根据传感器数据调整环境参数,确保大棚内条件适宜作物生长。 - **自动/手动切换**:提供了灵活的操作模式,便于根据不同需求调整。 - **RGB触摸屏**:作为用户交互界面,显示实时环境数据及系统状态。 - **ESP8266**:用于实现本地端与远程端(PC机)间的无线通信。 - **QT开发平台**:远程监控软件的开发环境,实现远程数据监测功能。 #### 系统架构 - **硬件总体设计**:整个系统由三个主要部分组成: - 以STM32为核心的大棚作物生长环境监控模块。 - 本地端与远程终端(QT平台)之间的数据通信。 - 远程终端的数据显示。 - **系统硬件设计**: - **STM32F429BIT6最小系统电路**:包括供电电路、复位电路、外部晶振电路、启动模式选择电路和下载电路等。这些组件共同构成了STM32的最小系统,确保其正常运行。 - **环境传感器**:包括但不限于温湿度传感器、光照强度传感器、土壤温湿度传感器、土壤电导率传感器等,用于收集大棚内的环境参数。 - **人机交互外设**:RGB触摸屏作为用户界面,方便用户查看环境数据和操作设备。 - **无线通信模块**:采用ESP8266实现本地端与远程端之间的数据传输。 - **执行机构**:如风扇、加热器、灌溉系统等,通过继电器控制实现对环境参数的调节。 #### 功能特点 - **数据采集与处理**:通过各种传感器实时采集大棚内的环境数据,STM32对数据进行分析处理后,根据预设的阈值控制相应的执行机构。 - **远程监控**:用户可通过QT平台远程查看大棚内的环境参数,便于及时了解作物生长情况并采取措施。 - **自动与手动模式切换**:系统支持自动和手动两种控制模式,自动模式下系统会根据预设参数自动调整环境条件,手动模式则允许用户直接控制执行机构。 - **用户界面友好**:通过RGB触摸屏提供直观的用户界面,使得系统易于操作和维护。 - **高性价比**:系统设计考虑到了成本效益,通过合理的硬件选型和软件优化,实现了较低的成本投入。 #### 实际应用价值 该远程监控系统的成功设计和实现,对于提升农业大棚的管理水平有着重要意义。它不仅能够有效减少人力成本,还能通过精确控制环境参数促进作物健康生长,进而提高产量和质量。此外,系统的可扩展性和灵活性也为后续的功能升级和应用扩展提供了可能,有助于推动智慧农业的发展。 基于STM32和QT平台的农业大棚远程监控系统是一种实用且高效的解决方案,能够显著提高农业生产的效率和可持续性。
2024-08-02 21:10:06 1.5MB stm32 毕业设计
1
在本项目中,我们关注的是一个基于STM8微控制器的直流无刷电机驱动电路设计。STM8是一款由意法半导体(STMicroelectronics)生产的8位微控制器,它具有高效能和低功耗的特点,适用于各种嵌入式控制系统,包括电机驱动。 直流无刷电机(BLDC)是一种无需机械换向器的电动机,它通常由三个相绕组组成,通过电子方式切换电流以控制电机转子的旋转。驱动电路的主要任务是为电机提供适当大小和相位的电流,以实现调速、正反转和保护功能。 电路中提到了JY01芯片,这可能是一个霍尔传感器或电机驱动器,用于检测电机的磁极位置,以便精确控制电机的换相。霍尔传感器可以输出脉冲信号,这些信号被STM8接收并用来控制电机的换相策略。 过流保护是驱动电路中的关键安全特性,通过在电路中设置采样电阻,可以监测电机电流。当电流超过预设阈值时,微控制器将关闭驱动信号,防止电机过热或损坏。这通常通过比较采样电阻两端的电压来实现,该电压与电机电流成比例。 电平转换电路用于解决不同逻辑电平之间的兼容问题。STM8和外部设备可能有不同的工作电压,例如,STM8的工作电压可能是3.3V,而某些电机驱动器可能需要5V逻辑电平。电平转换器如MAX232可以将低电平逻辑转换为高电平逻辑,确保通信的正确进行。 电机调速通常通过改变施加到电机相绕组上的电压或电流脉冲宽度(PWM)来实现。STM8的PWM功能允许精确地控制电机速度,以满足不同的应用需求。 电路中还包含了电源管理部分,如12V和48V电源,以及不同容量的电容,如220uF和1000uF,它们用于滤波和稳定电压。此外,还有电阻、电感和二极管等元件,它们共同确保了电路的稳定运行。 这个基于STM8的直流无刷电机驱动电路设计涵盖了电机控制的核心要素,包括电机的正反转、调速和过流保护,以及必要的电平转换和电源管理,是一个完整的电机驱动解决方案。这样的设计对理解和构建类似系统非常有帮助,同时也展示了STM8微控制器在电机控制领域的应用潜力。
2024-08-02 17:01:07 411KB 无刷电机驱动 stm8 过流保护 电平转换
1
拉曼光谱是一种非破坏性的分析技术,广泛应用于化学、生物、材料科学等领域,用于研究物质的分子结构和组成。MATLAB是一款强大的数值计算和数据分析软件,它为处理各种复杂数据,包括拉曼光谱提供了丰富的工具和算法。在本示例中,我们将探讨如何利用MATLAB中的airPLS算法来处理拉曼光谱数据。 airPLS算法是一种偏最小二乘回归(Partial Least Squares, PLS)的变体,特别适用于处理存在背景噪音和共线性问题的光谱数据。PLS算法旨在找到能够最大化变量与响应之间关系的投影方向,通过分解数据的协方差矩阵来提取特征成分,进而进行建模和预测。 在MATLAB中实现airPLS算法,你需要了解以下关键步骤: 1. **数据导入**:你需要将原始拉曼光谱数据导入MATLAB。这通常涉及读取CSV或TXT文件,这些文件包含了光谱的波长值和对应的强度值。MATLAB的`readtable`或`textscan`函数可以帮助你完成这个任务。 2. **数据预处理**:拉曼光谱数据往往包含噪声和背景趋势,因此在应用airPLS之前需要进行预处理。可能的操作包括平滑滤波(如移动平均或 Savitzky-Golay 滤波)、背景扣除(如基线校正)以及归一化(如标度至单位范数或总强度归一化)。 3. **airPLS算法**:MATLAB中没有内置的airPLS函数,但你可以根据算法的数学原理自行编写或者寻找开源实现。airPLS的核心在于迭代过程,通过交替更新因子加载和响应向量,以最小化残差平方和并最大化解释变量与响应变量之间的相关性。 4. **模型构建**:在确定了合适的主成分数量后,使用airPLS算法对数据进行降维处理,得到特征向量。然后,这些特征向量可以用于建立与目标变量(例如,物质的化学成分或物理性质)的关系模型。 5. **模型验证**:为了评估模型的性能,你需要划分数据集为训练集和测试集。使用训练集构建模型后,在测试集上进行预测,并计算预测误差,如均方根误差(RMSE)或决定系数(R²)。 6. **结果可视化**:你可以利用MATLAB的绘图功能展示原始光谱、预处理后的光谱、主成分得分图以及预测结果,以直观地理解数据和模型的表现。 通过这个MATLAB代码示例,你将能够深入理解拉曼光谱数据的处理流程,掌握airPLS算法的实现,并学习如何利用这种技术来解析和预测复杂的数据模式。同时,通过实际操作,你还可以提升MATLAB编程技能,进一步提升在数据分析领域的专业能力。
2024-08-02 16:53:35 260KB matlab
1
origin官方交互文档 包含python语法 originpro包的操作等
2024-08-02 16:05:16 5.87MB origin python
1
本研究聚焦于基于分布式模型预测控制(DMPC)的多固定翼无人机(UAV)共识控制策略。文章详细介绍了如何通过DMPC实现多架无人机之间的信息共享、协调和决策制定,以达到协同飞行的目的。研究内容包括无人机的环境感知、信息交流机制以及飞行策略和路径规划的共同制定。该研究适用于无人机控制领域的专业人士、学者以及对无人机协同飞行感兴趣的爱好者。使用场景涵盖无人机搜索、监视、巡航等协同任务。目标是提升多无人机系统在执行复杂任务时的效率和安全性。 关键词标签:分布式控制 模型预测控制 无人机 协同飞行
2024-08-02 09:38:45 182.56MB 分布式 matlab 模型预测控制 无人机
1
在本项目中,我们探讨的是一个基于Vue2.x、TypeScript和Element-UI框架构建的大屏可视化组件集合,特别适用于创建高效的信息展示驾驶舱。这个项目利用了ECharts这一强大的数据可视化库,提供了六个精心设计的组件,为数据洞察提供直观且吸引人的界面。 Vue2.x是一个广泛使用的前端JavaScript框架,它简化了组件化开发,允许开发者构建可复用、可维护的用户界面。Vue2.x引入了虚拟DOM,提高了性能,并提供了响应式数据绑定,使得数据和视图之间的交互更加流畅。 TypeScript是JavaScript的一个超集,它添加了静态类型系统,提高了代码的可读性和可维护性。在Vue2.x项目中使用TypeScript,可以捕获编译时的错误,减少运行时的bug,同时为大型项目提供更好的工具支持。 Element-UI是基于Vue2.x的一套成熟的UI组件库,它提供了丰富的UI元素,如表格、按钮、提示、下拉菜单等,帮助开发者快速构建美观的界面。在本项目中,Element-UI不仅用于基础界面构建,还可能与ECharts组件配合,实现数据驱动的交互式图表。 ECharts是一款由百度开源的数据可视化库,它支持各种图表类型,如折线图、柱状图、饼图、散点图等,且具有良好的交互性和丰富的自定义选项。在大屏可视化组件中,ECharts能够将复杂的数据转化为易于理解的图形,帮助决策者快速解读关键信息。 这六个大屏可视化组件(驾驶舱)可能是: 1. **综合仪表盘**:展示整体业务指标,如收入、利润、增长速率等。 2. **时间序列分析**:通过折线图或区域图显示随时间变化的趋势。 3. **地理分布图**:利用地图展示数据的地域分布情况。 4. **热点分析**:通过热力图或散点图揭示高密度区域或关联关系。 5. **对比分析**:通过柱状图或饼图对比不同类别的数据表现。 6. **KPI(关键绩效指标)指示器**:直观地展示关键指标的完成度或状态。 这些组件通常会包含动态更新、数据过滤、缩放、平移等交互功能,以适应不同场景的需求。开发者可以通过调整ECharts的配置项,定制组件的颜色、样式、动画效果等,以满足特定的视觉需求。 项目名为"data-visualization-master",暗示了这是一个专注于数据可视化的主项目,其中包含了所有相关的源代码、配置文件和资源。通过深入研究这些文件,开发者不仅可以学习到如何结合Vue2.x、TypeScript、Element-UI和ECharts构建大屏组件,还可以了解如何组织项目结构、优化性能以及实现组件间的通信。 总结来说,这个项目为开发者提供了一个实际应用示例,展示了如何利用现代前端技术栈创建高效的大屏可视化解决方案,对于提升数据可视化技能和实践经验有着显著的帮助。
2024-08-02 08:57:13 38.19MB
1
1. Matlab实现径向基神经网络的时间序列预测(完整源码和数据) 2. 单列数据,递归预测-自回归,时间序列预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本
2024-08-02 06:30:00 25KB 机器学习 神经网络 Matlab 时间序列
1
基于多项式插值的亚像素边缘坐标拟合直线示例, VS2015 MFC. 具体原理可参考 https://blog.csdn.net/yx123919804/article/details/103123071
2024-08-01 19:02:03 250KB OpenCV 直线拟合
1
基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测 BP神经网络是一种常用的机器学习算法,广泛应用于数据建模、预测和优化等领域。在催化剂脱硝性能预测中,BP神经网络可以用于建立预测模型,以提高SCR蜂窝状催化剂的脱硝效率。 SCR蜂窝状催化剂是一种广泛应用于烟气脱硝的催化剂,它具有高效、稳定和长久的特点。然而,SCR蜂窝状催化剂的脱硝性能受到多种因素的影响,如温度、氧气含量、氨氮摩尔比、NO浓度等。因此,建立一个能够预测SCR蜂窝状催化剂脱硝性能的模型具有重要的实际意义。 BP神经网络模型可以通过学习实验数据,建立一个能够预测SCR蜂窝状催化剂脱硝性能的模型。在本文中,我们使用BP神经网络模型,选择了空速、温度、氧气含量、氨氮摩尔比、NO浓度五个独立变量,建立了SCR蜂窝状催化剂脱硝性能预测模型。 实验结果表明,BP神经网络模型能够较好地预测SCR蜂窝状催化剂的脱硝性能,绝对误差的平均值为8%,相对误差的平均值为11%。这表明BP神经网络模型能够较好地拟合SCR蜂窝状催化剂的脱硝性能,且具有较高的预测精度。 本文的研究结果表明,BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,为SCR蜂窝状催化剂的实际应用提供了依据。 在SCR蜂窝状催化剂脱硝性能预测中,BP神经网络模型的应用具有以下几个优点: BP神经网络模型可以处理复杂的非线性关系,可以较好地拟合SCR蜂窝状催化剂的脱硝性能。 BP神经网络模型可以自动地选择最优的模型参数,避免了人工选择模型参数的主观性。 BP神经网络模型可以快速地进行预测,具有较高的计算效率。 BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,具有广泛的应用前景。 在SCR蜂窝状催化剂脱硝性能预测中,BP神经网络模型的应用还存在一些挑战,如数据的质量和量的限制、模型的过拟合和欠拟合等问题。这需要我们在实际应用中,进一步改进和完善BP神经网络模型。 BP神经网络模型可以作为SCR蜂窝状催化剂脱硝性能预测的有力工具,具有广泛的应用前景。
2024-08-01 17:54:17 2.42MB 神经网络 深度学习 机器学习 数据建模
1