Chrome浏览器是目前全球最受欢迎的网页浏览器之一,以其稳定、快速和强大的功能著称。版本102.0.5005.61是Chrome的一个更新版本,它可能包含了一系列性能改进、安全修复以及新功能的引入。这些更新旨在提供更好的用户体验,并确保用户的数据安全。 在macOS系统上,Chrome浏览器的安装文件通常以`.pkg`结尾,如`GoogleChrome.pkg`。这是一个苹果打包工具创建的安装包,用户可以通过双击运行来安装Chrome。安装过程中,系统会引导用户完成一系列步骤,包括许可协议的接受、安装位置的选择等。安装完成后,Chrome将被添加到用户的应用程序文件夹中,方便随时使用。 `chromedriver`是一个与Chrome浏览器配套的自动化测试工具,主要用于Web自动化测试,特别是对于Python开发者来说,它是Selenium库的重要组成部分。Selenium是一个强大的Web应用程序接口测试框架,允许开发者模拟真实用户的行为,进行网页的自动化操作,例如点击按钮、填写表单、执行脚本等。`chromedriver`作为中间件,它能够与Chrome浏览器通信,实现对浏览器的远程控制。 使用Python和Selenium结合`chromedriver`进行Web自动化时,首先需要在Python环境中安装`selenium`库,通过pip命令可以轻松完成: ```bash pip install selenium ``` 接着,需要确保`chromedriver`的版本与当前安装的Chrome浏览器版本相匹配,因为不兼容的版本可能会导致自动化测试失败。安装完`chromedriver`后,可以在Python代码中实例化一个`webdriver.Chrome()`对象,指定`chromedriver`的路径,然后就可以开始编写自动化脚本了: ```python from selenium import webdriver driver = webdriver.Chrome('/path/to/your/chromedriver') driver.get('http://www.example.com') # 这里编写其他自动化操作... driver.quit() ``` 在实际开发或测试中,利用这种组合可以有效地进行功能验证、性能测试、UI测试等。不过,需要注意的是,使用`chromedriver`进行自动化测试时,应遵守网站的使用条款,避免对服务器造成不必要的压力。 总结起来,这个压缩包提供的`Chrome 102.0.5005.61`和`chromedriver`是macOS系统上进行Python自动化测试的重要工具。通过它们,开发者能够高效地进行Web应用的自动化测试,提高工作效率,同时确保应用的质量和安全性。
2024-08-05 14:40:36 207.5MB python
1
在Matlab环境下的基于深度强化学习(DQN)的路径规划
2024-08-05 10:28:00 99KB MATLAB 深度强化学习 路径规划
1
在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种强大的监督学习算法,常被用于分类和回归任务。在这个项目中,我们将探讨如何利用Python来实现SVM进行图像识别分类。这个过程对初学者非常友好,因为代码通常会包含详尽的注释,便于理解。 我们需要理解SVM的基本原理。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点被最大程度地分开。这个超平面是距离两类样本最近的距离最大化的边界。在二维空间中,这个超平面可能是一条直线;在高维空间中,它可能是一个超平面。SVM通过核函数将低维数据映射到高维空间,使得原本线性不可分的数据变得可以线性分离。 在图像识别中,我们首先需要提取图像的特征。HOG(Histogram of Oriented Gradients,导向梯度直方图)是一种流行的方法,它能有效地捕获图像中的形状和边缘信息。HOG特征的计算包括以下几个步骤: 1. 尺度空间平滑:减少噪声影响。 2. 灰度梯度计算:计算每个像素的梯度强度和方向。 3. 梯度直方图构造:在小的局部区域(细胞单元)内统计不同方向的梯度数量。 4. 直方图归一化:防止光照变化的影响。 5. 块级积累:将相邻的细胞单元组合成一个块,进行方向直方图的重排和标准化,进一步增强对比度。 6. 特征向量构建:将所有块的直方图组合成一个全局特征向量。 接下来,我们可以使用这些HOG特征作为输入,训练SVM分类器。Python中常用的机器学习库Scikit-Learn提供了SVM的实现。我们可以通过以下步骤进行操作: 1. 加载数据集:通常我们会用到预处理好的图像数据集,如MNIST或CIFAR-10。 2. 准备数据:将图像转换为HOG特征,同时分割数据集为训练集和测试集。 3. 创建SVM模型:选择合适的核函数,如线性核、多项式核或RBF(高斯核),并设置相应的参数。 4. 训练模型:使用训练集对SVM进行拟合。 5. 验证与测试:在测试集上评估模型的性能,例如计算准确率、召回率和F1分数。 6. 应用模型:对新的未知图像进行预测,分类结果。 在实现过程中,我们需要注意数据预处理,如归一化特征,以及选择合适的参数进行调优,如C(惩罚参数)和γ(RBF核的宽度)。交叉验证可以帮助我们找到最佳参数组合。 本项目中的代码示例将详细展示这些步骤,通过注释解释每部分的作用,帮助初学者快速上手SVM图像分类。通过实践,你可以深入理解SVM的工作机制,并掌握如何将其应用于实际的图像识别问题。
2024-08-05 09:07:03 218.95MB python 支持向量机 机器学习 图像分类
1
《活学活用wxPython》 pdf版,有图 全1-18章节 因为压缩包超过60M,所以分成两个压缩包上传,这个是第二部分,注意要两部分一起下载才能解压。
2024-08-04 21:12:54 27.48MB wxpython python
1
《活学活用wxPython》 pdf版,有图 全1-18章节 因为压缩包超过60M,所以分成两个压缩包上传,这个是第一部分,注意要两部分一起下载才能解压。
2024-08-04 21:12:00 35MB wxpython python
1
【能量管理系统设计】能量管理系统是基于总体电耗控制优化算法构建的,旨在通过高效管理和调控能源消耗,以达到节能减排的目的。这种系统的核心在于其优化算法,它不仅能减少由于过剩流量和扬程导致的电能浪费,还能确保整个系统运行在最高效率点,从而在满足生产需求的同时实现最大节能。 【总体电耗控制优化算法原理】该算法通过软硬件结合的方式,全面考虑输送介质系统和配电系统的运行消耗,根据泵机和电机的额定参数,采用优化计算方法确定最佳的泵机搭配和变频器调速方案。这不仅减少了富裕流量和扬程的电耗,还确保了整个系统的整体效率。实际应用中,与单独使用变频调速相比,可以实现更高的节能效果,节电率可达7%至33%。 【设计目标】本项目的目标是开发一个基于多重安全性机制的SCADA(Supervisory Control And Data Acquisition)总体架构的能量管理系统应用平台。该平台需在不同硬件和软件上提供统一的运行环境,支持多平台应用,具备高可靠性,分布式数据库容量大,可实现分布式实时监控和综合调度,支持多种通信协议和工业标准接口,具备物联网技术的多系统集成能力,并提供灵活的数据共享和交互接口。 【总体方案】设计遵循国际和行业标准,强调系统的开放性和标准化,选用标准化硬件平台,软件设计模块化、接口完整且开放,以适应未来扩展和第三方集成。系统运行环境支持多种硬件平台、操作系统、数据库管理系统和网络协议,确保在不同安全级别下满足能量管理需求。 【模块设计】 1. 系统运行环境模块:提供兼容多种架构、网络环境、操作系统和数据库管理系统的支持,确保系统的安全性和适应性。 2. 系统应用平台模块:提供统一运行环境,维护系统稳定,实现事件管理和消息管理,确保系统的实时性、安全性和可靠性。 基于总体电耗控制算法的能量管理系统是一个集成了优化算法、分布式监控和综合调度、多系统集成和高安全性的解决方案,旨在提升工业生产过程中的能源效率,降低能耗,适用于电力、冶金、石化等高耗能行业,对于推动绿色制造和可持续发展具有重要意义。
1
树莓派BLE 蓝牙低功耗设备控制,python BLE。 1.使用库gatt_linux,封装了常规使用的方法,比如扫描设备,可以根据蓝牙名称获取对应的蓝牙地址。连接蓝牙,断开蓝牙。获取BLE返回值,根据UUID发送指令等等。 2.在树莓派上可以开多个线程使用这个类,可以同时连接多个BLE设备,发送指令等等。 3.在使用不同设备时,注意修改自己的UUID即可。 4.需要安装的有 Blueman蓝牙管理工具,Bluez包,请自行百度安装。 例如:#发送字符串指令 def Send_Get(self,CMD): self.BleWaitData=True self.BleReceiveData='' self.device.IBC_Write_CHAR.write_value(bytearray(CMD)) t1=time.time() while self.BleWaitData: #time.sleep(0.1) 。。。
2024-08-04 10:42:57 9KB BLE连接 蓝牙低功耗
1
mamba_ssm 在Windows 下whl 直接 pip install 安装这个whl即可,主要针对的是Vim
2024-08-04 09:50:33 89.97MB vim Python
1
1. 手动实现循环神经网络RNN,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2. 使用torch.nn.rnn实现循环神经网络,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3. 不同超参数的对比分析(包括hidden_size、batchsize、lr等)选其中至少1-2个进行分析 4. 用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分 5. 手动实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 6. 使用torch.nn实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 7. 设计实验,对比分析LSTM和GRU在相同数据集上的结果。
2024-08-03 21:28:16 2.37MB 深度学习 Python 循环神经网络
1
在本项目中,我们将深入探讨如何使用STM32微控制器结合FC-28土壤湿度传感器以及OLED显示屏来实现一个详细的监测系统。STM32是一款广泛应用于嵌入式领域的32位微控制器,以其高性能、低功耗和丰富的外设接口而备受青睐。FC-28土壤湿度传感器则用于测量土壤的水分含量,这对于农业自动化、植物养护或环境监控等领域具有重要意义。OLED显示屏则能直观地展示传感器采集的数据,便于实时监控。 我们要了解STM32的基础知识。STM32家族是基于ARM Cortex-M内核的,具有多种型号,如STM32F103、STM32F4等,分别适用于不同的性能需求。在本项目中,我们可能使用的是STM32F1系列,因为它具有足够的处理能力和资源,且性价比高。 接着,FC-28土壤湿度传感器的工作原理是利用电容式原理来检测土壤湿度。传感器由两片电极组成,当土壤中的水分含量增加时,电极间的介电常数也会增加,导致电容值改变,通过测量这个变化,我们可以推算出土壤的湿度。 为了读取FC-28传感器的数据,我们需要将其连接到STM32的ADC(模拟数字转换器)接口。STM32的ADC功能强大,可以将模拟信号转换为数字信号,供微控制器处理。在编程时,我们需要配置ADC的相关寄存器,设置采样时间、分辨率等参数,并启动转换,然后读取转换结果。 然后,我们需要编写驱动程序来处理OLED显示屏。OLED(有机发光二极管)屏幕具有自发光、高对比度和快速响应等优点,常用于小型嵌入式设备。OLED通常通过I2C或SPI接口与MCU通信。在STM32上,我们需要初始化这些接口,并发送指令控制屏幕显示内容。例如,设置显示模式、清屏、写入像素点或字符串等。 在软件设计方面,项目可能使用C或C++语言,遵循面向对象的原则进行模块化设计。代码可能包含以下几个部分:初始化函数,用于配置GPIO、ADC和I2C/SPI接口;传感器数据采集函数,用于周期性地读取土壤湿度;数据显示函数,负责更新OLED屏幕的内容;以及主循环,协调各个模块的运行。 在实际应用中,我们可能还需要考虑电源管理、抗干扰措施、数据记录和远程传输等功能。例如,通过加入RTC(实时时钟)模块记录测量时间,或者通过无线模块如蓝牙或LoRa将数据发送到手机或云端服务器,以便进一步分析和远程监控。 这个项目涵盖了STM32微控制器的使用、传感器数据采集、模拟信号转换、OLED显示技术以及嵌入式系统设计等多个方面的知识。通过实践这个项目,不仅可以提升对STM32和嵌入式系统的理解,还能掌握实际应用中的硬件接口设计和软件编程技巧。
2024-08-02 22:30:42 326KB stm32
1