使用yolov8进行烟火检测 目标识别 目标检测

上传者: 44575717 | 上传时间: 2025-05-07 16:05:13 | 文件大小: 125.45MB | 文件类型: ZIP
烟火检测是一种计算机视觉任务,主要用于识别和定位图像或视频中的烟雾和火焰。这类检测在森林防火、工业安全监控、智能城市监控等应用中具有重要意义。与其他目标检测任务相比,烟火检测具有一些独特的挑战,如火焰的形状不规则、颜色变化多端、背景复杂等。 YOLO等实时目标检测算法由于其速度快、全局推理的特点,也被应用于烟火检测任务中。通过训练YOLO模型,检测系统能够快速识别出图像或视频中的烟雾和火焰区域,并在实际场景中实时预警。 优点: YOLO在烟火检测中的高效性使其能够在实时视频流中快速做出检测,适合应用于监控系统、无人机巡检等场景。 缺点: 在烟雾、火焰形状复杂多变的情况下,YOLO可能需要通过大量数据增强和模型优化来提升检测精度。 应用场景: 森林防火监控: 利用烟火检测系统对森林进行实时监控,及时发现火灾隐患。 工业安全: 在工厂、石化等高危环境中,烟火检测系统可以帮助快速发现火灾源头,减少财产损失和人员伤亡。 城市监控: 智能监控系统结合烟火检测算法,能够在城市公共区域实时预警火灾,提高城市安全。 烟火检测技术的发展有助于提升火灾预防和应急响应的效率,减少火灾带来的危害。

文件下载

资源详情

[{"title":"( 766 个子文件 125.45MB ) 使用yolov8进行烟火检测 目标识别 目标检测","children":[{"title":"events.out.tfevents.1721566538.RP.5912.0 <span style='color:#111;'> 181.91KB </span>","children":null,"spread":false},{"title":"main.cc <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false},{"title":"inference.cc <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"main.cc <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"CITATION.cff <span style='color:#111;'> 764B </span>","children":null,"spread":false},{"title":"CNAME <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"inference.cpp <span style='color:#111;'> 13.00KB </span>","children":null,"spread":false},{"title":"inference.cpp <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"main.cpp <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"main.cpp <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"style.css <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"results.csv <span style='color:#111;'> 674B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"Dockerfile-conda <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"Dockerfile-jetson-jetpack4 <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"Dockerfile-jetson-jetpack5 <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"Dockerfile-python <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"Dockerfile-runner <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"inference.h <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"inference.h <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"inference.h <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"comments.html <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"main.html <span style='color:#111;'> 904B </span>","children":null,"spread":false},{"title":"source-file.html <span style='color:#111;'> 858B </span>","children":null,"spread":false},{"title":"favicon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"yolov88.iml <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 36.00KB </span>","children":null,"spread":false},{"title":"explorer.ipynb <span style='color:#111;'> 22.27KB </span>","children":null,"spread":false},{"title":"object_tracking.ipynb <span style='color:#111;'> 13.06KB </span>","children":null,"spread":false},{"title":"object_counting.ipynb <span style='color:#111;'> 12.66KB </span>","children":null,"spread":false},{"title":"heatmaps.ipynb <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"hub.ipynb <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"train_batch0.jpg <span style='color:#111;'> 528.95KB </span>","children":null,"spread":false},{"title":"train_batch2.jpg <span style='color:#111;'> 515.22KB </span>","children":null,"spread":false},{"title":"train_batch1.jpg <span style='color:#111;'> 492.31KB </span>","children":null,"spread":false},{"title":"labels_correlogram.jpg <span style='color:#111;'> 260.15KB </span>","children":null,"spread":false},{"title":"labels.jpg <span style='color:#111;'> 243.30KB </span>","children":null,"spread":false},{"title":"bus.jpg <span style='color:#111;'> 134.20KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"extra.js <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 33.71KB </span>","children":null,"spread":false},{"title":"predict.md <span style='color:#111;'> 49.22KB </span>","children":null,"spread":false},{"title":"cfg.md <span style='color:#111;'> 44.82KB </span>","children":null,"spread":false},{"title":"tensorrt.md <span style='color:#111;'> 36.73KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 36.49KB </span>","children":null,"spread":false},{"title":"README.zh-CN.md <span style='color:#111;'> 35.88KB </span>","children":null,"spread":false},{"title":"train.md <span style='color:#111;'> 33.12KB </span>","children":null,"spread":false},{"title":"ros-quickstart.md <span style='color:#111;'> 33.01KB </span>","children":null,"spread":false},{"title":"model-deployment-options.md <span style='color:#111;'> 25.98KB </span>","children":null,"spread":false},{"title":"nvidia-jetson.md <span style='color:#111;'> 25.76KB </span>","children":null,"spread":false},{"title":"yolo-world.md <span style='color:#111;'> 23.88KB </span>","children":null,"spread":false},{"title":"openvino.md <span style='color:#111;'> 23.48KB </span>","children":null,"spread":false},{"title":"raspberry-pi.md <span style='color:#111;'> 23.26KB </span>","children":null,"spread":false},{"title":"yolov8.md <span style='color:#111;'> 22.97KB </span>","children":null,"spread":false},{"title":"quickstart.md <span style='color:#111;'> 22.34KB </span>","children":null,"spread":false},{"title":"track.md <span style='color:#111;'> 21.57KB </span>","children":null,"spread":false},{"title":"steps-of-a-cv-project.md <span style='color:#111;'> 21.28KB </span>","children":null,"spread":false},{"title":"analytics.md <span style='color:#111;'> 20.01KB </span>","children":null,"spread":false},{"title":"simple-utilities.md <span style='color:#111;'> 20.00KB </span>","children":null,"spread":false},{"title":"yolo-common-issues.md <span style='color:#111;'> 19.77KB </span>","children":null,"spread":false},{"title":"heatmaps.md <span style='color:#111;'> 19.64KB </span>","children":null,"spread":false},{"title":"train_custom_data.md <span style='color:#111;'> 19.09KB </span>","children":null,"spread":false},{"title":"roboflow.md <span style='color:#111;'> 18.63KB </span>","children":null,"spread":false},{"title":"yolov10.md <span style='color:#111;'> 18.61KB </span>","children":null,"spread":false},{"title":"model-training-tips.md <span style='color:#111;'> 18.52KB </span>","children":null,"spread":false},{"title":"models.md <span style='color:#111;'> 18.37KB </span>","children":null,"spread":false},{"title":"object-counting.md <span style='color:#111;'> 18.25KB </span>","children":null,"spread":false},{"title":"model-deployment-practices.md <span style='color:#111;'> 17.96KB </span>","children":null,"spread":false},{"title":"yolov7.md <span style='color:#111;'> 17.77KB </span>","children":null,"spread":false},{"title":"yolov9.md <span style='color:#111;'> 17.74KB </span>","children":null,"spread":false},{"title":"isolating-segmentation-objects.md <span style='color:#111;'> 17.30KB </span>","children":null,"spread":false},{"title":"data-collection-and-annotation.md <span style='color:#111;'> 17.06KB </span>","children":null,"spread":false},{"title":"sam.md <span style='color:#111;'> 16.12KB </span>","children":null,"spread":false},{"title":"CI.md <span style='color:#111;'> 15.76KB </span>","children":null,"spread":false},{"title":"pose.md <span style='color:#111;'> 15.75KB </span>","children":null,"spread":false},{"title":"segment.md <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"kfold-cross-validation.md <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false},{"title":"detect.md <span style='color:#111;'> 14.96KB </span>","children":null,"spread":false},{"title":"amazon-sagemaker.md <span style='color:#111;'> 14.90KB </span>","children":null,"spread":false},{"title":"obb.md <span style='color:#111;'> 14.89KB </span>","children":null,"spread":false},{"title":"ray-tune.md <span style='color:#111;'> 14.89KB </span>","children":null,"spread":false},{"title":"model-testing.md <span style='color:#111;'> 14.83KB </span>","children":null,"spread":false},{"title":"model_export.md <span style='color:#111;'> 14.81KB </span>","children":null,"spread":false},{"title":"python.md <span style='color:#111;'> 14.74KB </span>","children":null,"spread":false},{"title":"model-monitoring-and-maintenance.md <span style='color:#111;'> 14.71KB </span>","children":null,"spread":false},{"title":"yolo-performance-metrics.md <span style='color:#111;'> 14.68KB </span>","children":null,"spread":false},{"title":"defining-project-goals.md <span style='color:#111;'> 14.61KB </span>","children":null,"spread":false},{"title":"pytorch_hub_model_loading.md <span style='color:#111;'> 14.54KB </span>","children":null,"spread":false},{"title":"tensorboard.md <span style='color:#111;'> 14.36KB </span>","children":null,"spread":false},{"title":"fast-sam.md <span style='color:#111;'> 14.14KB </span>","children":null,"spread":false},{"title":"classify.md <span style='color:#111;'> 14.11KB </span>","children":null,"spread":false},{"title":"preprocessing_annotated_data.md <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"index.md <span style='color:#111;'> 14.07KB </span>","children":null,"spread":false},{"title":"workouts-monitoring.md <span style='color:#111;'> 14.03KB </span>","children":null,"spread":false},{"title":"api.md <span style='color:#111;'> 13.92KB </span>","children":null,"spread":false},{"title":"model-evaluation-insights.md <span style='color:#111;'> 13.69KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明