给大家提供了完整的jar包、一键化安装、一键启停脚本以及使用说明教程 由于zeppelin文件大小限制,分开上传,大家点进我主页的资源查看
2021-09-28 09:00:51 723.22MB linux一键安装 mysql hadoop hive
1
1、 load data local inpath '/input/files/tb.txt' overwrite into table tb; LOCAL ,就是从HDFS加载 OVERWRITE意味着,数据表已经存在的数据将被删除。省略OVERWRITE,数据文件将会添加到原有数据列表里 2 、hive –e 执行hql语句 -i 初始化参数,多用于加载UDF -f 执行hql文件,因为无法传参数,所以项目中基本不用
2021-09-14 18:08:03 507KB 大数据 云计算 Hadoop Hive
1
基于hadoop的Hive数据仓库JavaAPI简单调用的实例,关于Hive的简介在此不赘述。hive提供了三种用户接口:CLI,JDBC/ODBC和 WebUI CLI,即Shell命令行 JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似 WebGUI是通过浏览器访问 Hive 本文主要介绍的就是第二种用户接口,直接进入正题。 1、Hive 安装: 1)hive的安装请参考网上的相关文章,测试时只在hadoop一个节点上安装hive即可。 2)测试数据data文件'\t'分隔: 1 zhangsan 2 lisi 3 wangwu 3)将测试数据data上传到linux目录下,我放置在:/home/hadoop01/data 2、在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口。使用下面命令进行开启: Java代码 收藏代码 hive --service hiveserver >/dev/null 2>/dev/null & 我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。   Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下: 1 [wyp@localhost/home/q/hive-0.11.0]$ bin/hive --service hiveserver -p10002 2 Starting Hive Thrift Server 上面代表你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:
2021-09-12 15:36:00 17.72MB hadoop
1
Hadoop集群监控Cacti 优点 监控每台服务器的详细数据 SNMP采集数据可以自己定义 相比zabbix:无需客户端 安装配置简单 spine采集速度快 模板众多 支持IPMI 缺点 SNMPD为UDP协议,不够稳定 无法获知集群整体运行状况
2021-09-06 13:13:21 901KB Hadoop Hive 大数据 云计算
1. 查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。 2. 数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。 3. 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。 4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。 5. 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。 6. 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl 的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。 9 7. 执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。 8. 可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。 9. 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
2021-09-06 09:10:08 1.03MB Hadoop Hive 大数据 阿里技术
学习大数据所需的工具,hive-1.1.0-cdh5.7.0.tar
2021-09-01 20:50:29 110.71MB hadoop hive
1
大数据高可用集群搭建详情,配置文件,版本,环境,集群规划, HA的解决方案,大数据高可用集群搭建详情,配置文件,版本,环境,集群规划, HA的解决方案
2021-09-01 13:41:57 1001KB 大数据 各个组件 hadoop hive
1
Hadoop集群监控与Hive高可用.pdf
2021-08-21 19:12:31 1.38MB Hadoop Hive 集群 监控
适合新手,详细 01-Java环境安装 02- Eclipse下载与安装 03-VMware虚拟机的安装 04-在VMware中安装CentOS 05- Hadoop集群+ Hive+ MySQL搭建
2021-08-11 18:06:52 1.19MB 大数据 hadoop hive
1
讲解hadoop生态,mapreduce原理,hive应用架构,数据过滤实战