针对零部件制造质量控制方面的缺陷检测,考虑到工业摄像头角度和零部件表面缺陷特征相对固定的特点,提出一种基于注意力机制的YOLO缺陷检测算法。围绕提升算法注意力,首先采用CZS算法,把图像上的缺陷区域剪切、缩放和拼接成新图像,使注意力集中于缺陷相关区域;然后采用裁减主干网络算法,裁减掉原版YOLOv3主干网络中无用的检测尺度层;最后使用数据增强算法增加训练样本量。实验案例结果表明:该算法检测精度99.2%,单帧图像检测时间0.01 s,性能均优于原版YOLOv3;该算法在固定摄像头场景下具有一定先进性,3项提升注意力的策略使算法训练精度收敛的更快、检测速度更快、检测性能更稳定。
2024-03-27 17:29:16 1.73MB 毕业设计 注意力机制 yolo
1
智慧工地数据集3065张反光衣安全帽行人检测数据集含voc和yolo格式两种标签(工地监控多视角多场景抓拍).zip 【实际应用】 智慧工地项目、反光衣穿戴检测、安全帽佩戴检测、人员入侵抓拍告警等 【数据集说明】 数据集一共3065张,标签包含yolo格式(txt)和voc格式(xml),标注工具LabelImg手工标注,标注精准,背景丰富、多视角监控拍摄,多种目标检测算法可直接使用(如YOLO系列、ssd、centernet、pp-yoloyoloX、PP-picoDet等等)。 真实工地监控摄像头拍摄采集,视角及背景多样化,标注精准无误,实际项目所用,算法拟合很好,质量可靠。由于上传资源大小限制,该资源上传了部分图片数据,完整图片资源中附有百度云下载链接。 【备注】 只分享高质量实际项目数据集,请放心下载,不要与乱七八糟数据比较,所有图片实际工地监控真实拍摄,具有很高的实用价值!使用过程有问题随时沟通。
2024-03-27 17:15:44 585.74MB 数据集
yolo实现语义分割(cityscapes数据集)附源码 语义分割是当今计算机视觉领域的关键问题之⼀。从宏观上看,语义分割是⼀项⾼层次的任务,为实现场景的完整理解铺平了道路
2024-03-27 09:57:02 665KB 数据集
1
yolov5疲劳驾驶检测,疲劳检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加语音报警,可统计技术,可定制yolov7,yolov8版本 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-03-25 10:34:22 69.85MB 网络 网络 目标检测 深度学习
1
yolov8(2023年8月版本),已经下好yolov8s.pt和yolov8n.pt,需要创建的文件夹都以创建,方便大家不用再去GitHub下载 可以搭配该博客:https://blog.csdn.net/weixin_43366149/article/details/132206526?spm=1001.2014.3001.5501
2024-03-25 10:19:56 367.44MB yolo
1
共4000+数据集,已划分好训练验证测试集,YOLO格式,可直接训练
2024-03-21 14:43:46 119.17MB 数据集 YOLO 深度学习
1
YOLO 是一种使用神经网络提供实时对象检测的算法。该算法因其速度和准确性而广受欢迎。它已在各种应用中用于检测交通信号、人员、停车计时器和动物。 YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为歼毁含回归问题完成的,并提供检测到的图像的类别概率。 YOLO 算法余轮采用卷积神经网络 (CNN) 实时检测物体。顾名思义,该算法只需要通过神经网络进行一次前向传播来检测物体。 这意味着整个图像中的预测是在单个算法运行中完成的。CNN 用于同时预测各种类别概率和边界框。 YOLO 算法由各种变体组成。
2024-03-20 13:53:03 173KB 毕业设计
1
数据集样本数量为5870,所有图片已标注为YOLO txt格式,划分为训练集、验证集和测试集,能直接用于YOLO算法的训练。可用于YOLO3d打印缺陷检测模型训练,机器学习,深度学习,人工智能,python,pycharm。
2024-03-13 16:21:35 233.88MB 数据集 缺陷检测 3d打印 深度学习
1
对文章《A COMPREHENSIVE REVIEW OF YOLO: FROM YOLOV1 AND BEYOND》进行了翻译和注释,方便做论文、或者研究YOLO技术参考用。实时物体检测已经成为众多邻域应用的关键组成部分,这些领域包括:自动驾驶车辆、机器人、视频监控和增强现实等。在众多物体检测算法中,近年来,YOLO(You Only Look Once)框架以其卓越的速度和准确性脱颖而出,实际证明能够快速可靠地识别图像中的物体。自诞生以来,YOLO经过了多次迭代,每个版本都在前一版本的基础上进行改进,不断在提高性能,截至本文发稿,YOLO框架从V1已经更新到了v8。作为机器视觉技术应用的我们,有必要对YOLO的技术演进进行系统了解,熟悉YOLO每个版本之间的关键创新、差异和改进(如网络设计、损失函数修改、锚框适应和输入分辨率缩放等)。从而更好地把握YOLO的技术发展主脉搏,更好地选择应用相关的视觉识别技术。
2024-03-12 22:49:47 5.05MB 毕业设计 自动驾驶 ar 网络
1
1、YOLO红外车辆行人检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
2024-03-07 15:03:15 117.41MB 数据集 课程资源