**PLC内部地址表详解** 在自动化控制领域,可编程逻辑控制器(Programmable Logic Controller,简称PLC)起着至关重要的作用。三菱FX系列PLC作为广泛应用的工业控制器之一,其内部地址表是理解并进行有效编程和通信的基础。这份“PLC内部地址表”涵盖了三菱FX系列PLC中的各种元件地址,对于与上位机软件进行数据交换至关重要。 我们需要了解PLC中的基本元件。PLC的核心是存储器,其中存放了程序和数据。在三菱FX系列PLC中,主要的存储元件包括输入继电器(X)、输出继电器(Y)、辅助继电器(M)、定时器(T)、计数器(C)等。 1. **输入继电器(X)**: 用于接收外部设备(如传感器)的信号,其地址通常以X000到X277的格式表示。例如,X000代表第一个输入点,X277代表最后一个输入点。 2. **输出继电器(Y)**: 输出继电器用于驱动外部负载(如电磁阀、电机),地址范围通常是Y000至Y277。Y000表示第一路输出,Y277为最后一路。 3. **辅助继电器(M)**: 这些是内部寄存器,用于临时存储中间计算结果或状态标志。地址范围从M000到M511。 4. **定时器(T)**: 定时器元件用于设置延时控制,根据类型分为通电延时定时器(Tn)和断电延时定时器(TN)。地址范围如T000至T255。 5. **计数器(C)**: 计数器用于计算脉冲次数,有增计数(Cn)和减计数(CN)之分。地址通常从C000到C255。 在与上位机软件通信时,需要明确指定PLC中的这些元件地址,以便正确读取或写入数据。例如,如果上位机软件需要获取X001的输入状态,就需要发送一个读取请求到这个地址。同样,如果要通过Y002控制一个输出,就要将指令发送到Y002的地址。 三菱通信协议是连接上位机和FX系列PLC的关键。它通常基于串行通信标准,如RS-485或RS-232,有时也会采用以太网接口。通信协议定义了数据帧的结构、命令格式、错误检查机制等,确保数据在上位机与PLC之间的可靠传输。 在实际应用中,了解和掌握PLC的内部地址表对于编写控制程序、调试系统和故障排查都是必不可少的。通过熟练运用这份地址表,工程师可以高效地实现PLC与上位机的互动,从而优化自动化系统的性能。因此,对于从事PLC编程和系统集成的人员来说,深入理解和利用“PLC内部地址表”是一项基础且重要的技能。
2024-09-02 17:32:47 1.11MB PLC通信 PLC元件地址 三菱通信协议
1
1 简介 Ci24R1 是一颗工作在 2.4GHz ISM 频段,专为低成本无线场合设计,集成嵌入式 ARQ 基带协议引擎的无线收发器芯片。工作频率范围为 2400MHz-2525MHz,共有 126 个 1MHz 带宽的信道。 Ci24R1 采用 GFSK/FSK 数字调制与解调技术。数据传输速率与 PA 输出功率都可 以调节,支持 2Mbps,1Mbps,250Kbps 三种数据速率。高的数据速率可以在更短的时间 完成同样的数据收发,因此可以具有更低的功耗。 Ci24R1是一款专为低成本无线应用设计的2.4GHz ISM频段无线收发器芯片。这款芯片在2400MHz至2525MHz的频率范围内工作,提供126个1MHz的信道选择,确保了通信的多样性和互不干扰。Ci24R1采用了GFSK/FSK数字调制解调技术,支持2Mbps、1Mbps和250Kbps三种数据速率,用户可以根据实际需求调整,以平衡传输速度和功耗。 该芯片的突出特性包括超低的待机功耗(仅为2uA),快速启动时间(小于160微秒),以及高电源抑制比(PSRR)的内置LDO。它的接收灵敏度达到-80dBm @2MHz,最大发射功率为11dBm,接收电流在2Mbps数据速率下为20mA。Ci24R1还配备了1bit RSSI输出,有助于评估无线连接的质量。通过集成的智能ARQ基带协议引擎,芯片能够自动处理错误检测和数据重传,增强了通信的可靠性。此外,它支持10MHz的两线SPI接口,简化了与微控制器(MCU)的连接。 Ci24R1适用于各种无线应用,如无线鼠标和键盘、无线遥控、体感设备、智能家居、无线音频和数据传输模块。封装形式为SOP-8或DFN-8,减少外部组件的需求,从而降低了整体系统成本。 在结构上,Ci24R1包含了电源管理单元、GFSK/FSK调制解调器、发送和接收FIFOs、ARQ引擎以及SPI寄存器映射。这些组成部分协同工作,确保高效可靠的无线通信。ARQ(自动重传请求)机制是其关键功能之一,它允许芯片在检测到传输错误时自动重新发送数据,无需额外的控制干预。其他相关术语如ART(自动重发)、ARD(自动重传延迟)等,都是为了优化无线通信的效率和稳定性。 Ci24R1的误码率(BER)是衡量数据传输质量的重要指标,而CRC(循环冗余校验)用于检测数据传输中的错误。SPI(串行外设接口)是与MCU交互的标准通信协议,而DPL(动态负载长度)则允许根据实际需要动态调整数据包的长度。RSSI(接收信号强度指示器)提供了关于无线信号强度的信息,对评估链接质量非常有用。 Ci24R1是一款集成了多种先进特性的无线收发器,尤其适合对成本敏感的2.4GHz ISM频段应用。其高效的性能、低功耗设计和强大的协议支持,使得Ci24R1成为众多物联网和无线产品开发的理想选择。
2024-09-01 23:34:15 4.01MB
1
CiA 408 DS V1.5.2: CANopen profile fluid power technology proportional valves and hydraulic transmissions IGCO_408_v01050202.pdf CiA 410 DS V1.3: CANopen profile for inclinometer IGCO_410_v01030000.pdf CiA 412-1 DS V1.0 CANopen profiles for medical devices – Part 1: General definitions MED_412_1v01000003.pdf CiA 412-2 DS V1.0 CANopen profiles for medical devices – Part 2: Automatic X-ray collimator MED_412_2v01000003.pdf CiA 412-6 DS V1.1 CANopen profiles for medical devices – Part 6: Dose measurement system MED_412_6v01010001.pdf CiA 414-1 DS V1.1: CANopen device profiles for weaving machines – Part 1: General definitions IGCO_414_1v01010002.pdf CiA 414-2 DS V1.1: CANopen device profiles for weaving machines – Part 2: Feeders IGCO_414_2v01010002.pdf CiA 418 DS V1.0.1: CANopen device profile for battery modules IGCO_418v01000102.pdf CiA 419 DS V1.0.1: CANopen device profile for battery charger IGCO_419v01000102.pdf
2024-09-01 17:08:23 7.36MB canopen 408-419
1
SL651-2014水文协议,里面有协议的示例
2024-08-31 19:56:39 51KB SL651-2014
1
安防Push通信协议v3.1.2是针对非人脸考勤系统的一种专门设计的数据传输标准,旨在确保在安全监控和管理场景中,实时、高效、可靠的信息推送服务。这一版本的协议不仅关注通信的安全性,同时也优化了非人脸识别技术下的考勤数据交换,以满足不同环境下的安防需求。 我们要理解什么是Push通信。Push通信是一种服务模型,它允许服务器主动向客户端发送数据,而无需客户端持续请求。这种机制在实时性要求较高的应用中非常关键,如安防监控系统,可以实时推送报警信息、设备状态更新等。 在安防Push通信协议v3.1.2中,有几个核心知识点: 1. **协议结构**:该协议可能包括了握手协议、数据传输格式、错误处理机制和断线重连策略等部分,这些都保证了通信的稳定性和可靠性。其中,握手协议用于建立和验证连接,数据传输格式则规定了如何打包和解包信息,以便正确地在客户端和服务器之间传递。 2. **非人脸考勤**:这个标签意味着该协议不依赖于人脸识别技术进行考勤记录。传统的考勤系统可能基于生物识别,如指纹或面部特征,但非人脸考勤可能采用其他方式,如RFID卡、二维码扫描或者位置感知技术。协议需要适应这些非生物特征的考勤方式,确保数据的准确性和隐私保护。 3. **安全性**:在安防领域,数据安全至关重要。协议可能包含了加密算法,如AES(高级加密标准)或SSL/TLS(安全套接层/传输层安全)来保护通信内容不被窃取或篡改。此外,可能还有身份验证机制,防止非法设备接入网络。 4. **效率**:实时推送大量数据需要高效的网络协议。可能采用了数据压缩技术减少传输负载,同时优化了数据包的大小和频率,以适应带宽有限的环境。 5. **兼容性与扩展性**:为了适应不断发展的安防技术和设备,协议需要具有良好的兼容性和可扩展性。这可能意味着协议支持多种设备类型和网络环境,并预留了未来功能升级的空间。 6. **错误处理与恢复**:考虑到网络环境的不稳定,协议必须包含错误检测和恢复机制。例如,当数据包丢失或错误时,可以通过重传机制保证数据的完整性。 至于提供的"安防3.2.1.pdf"文件,很可能是该协议的详细文档或实现指南,包含了上述所有知识点的具体实现细节和技术规范。阅读这份文档将有助于深入理解安防Push通信协议v3.1.2的工作原理和应用方法,对于开发或维护相关系统的人来说是非常宝贵的参考资料。
2024-08-31 17:41:40 653KB 通信协议 非人脸考勤
1
MIPI D-PHY协议是移动行业接口联盟(MIPI Alliance)制定的一种高速物理层(PHY)接口标准,广泛应用于移动设备、相机模组、显示模块等领域的数据传输。D-PHY版本1.2是在2014年发布的一个更新版本,它在前一版本的基础上进行了编辑和技术上的改进。 D-PHY协议的核心目标是提供一种低功耗、高性能的串行接口,以支持高速数据传输。协议主要包括以下几个关键组成部分: 1. ** Lane Configuration**:D-PHY协议支持单 lane、双 lane 和四 lane 的配置,可以根据应用需求调整带宽和功耗。Lane是数据传输的通道,多lane可以增加数据传输速率。 2. **电压移位键控(VSK)**:这是D-PHY的数据传输机制,通过改变信号线上的电压水平来编码数据,分为高电平(HS)和低电平(LS)两种状态,以实现高速传输。 3. **状态机模型**:D-PHY协议定义了四种主要的状态,包括休眠(Sleep)、低速(Low Speed)、预充电(Pre-Charge)和高速(High Speed)。这些状态转换有效地管理了能量消耗,并确保了数据传输的可靠性。 4. **Calibration**:校准是D-PHY中的一个重要环节,用于调整接收器和发射器之间的同步,以确保数据准确无误地传输。校准过程包括时钟恢复、眼图分析、均衡器设置等步骤,确保信号质量。 5. **Lane Level Equalization**:D-PHY支持在lane级别进行均衡,以补偿信号在传输过程中可能遇到的衰减和干扰,保证数据的完整性。 6. **Error Correction and Detection**:协议包含错误检测和纠正机制,如CRC(循环冗余检查)和包头尾部的奇偶校验,以检测并纠正传输中的错误。 7. **电源管理**:D-PHY协议还考虑了电源管理,允许设备在不传输数据时进入低功耗模式,以节省能源。 8. **兼容性与扩展性**:D-PHY协议设计时考虑了与其他MIPI接口标准(如C-PHY、CSI-2、DSI等)的兼容性和未来技术的扩展性。 9. **知识产权(IPR)声明**:MIPI Alliance对D-PHY协议拥有版权,使用该协议的材料需要获得其授权,且不提供任何明示或暗示的保修,包括但不限于适销性、特定用途适用性、非侵权性等。 MIPI D-PHY协议1.2版本是一个经过优化的高速接口标准,旨在为移动设备提供高效、可靠的物理层数据传输,同时兼顾了低功耗和易扩展性的需求。通过严格的校准和管理机制,确保了数据传输的精确性和稳定性。
2024-08-31 16:29:55 2.4MB 标准协议
1
Download from your IP address is not allowed 百度网盘永久连接: QT下载: qt-opensource-linux-x64-5.8.0.run: 链接:https://pan.baidu.com/s/1sQ3tqPaWdDnmhBYAc_XR7g qt-opensource-linux-x64-5.13.1.run: 链接:https://pan.baidu.com/s/1IZ2scvtzW1lK7SyUJQDAzQ qt-opensource-linux-x64-5.13.1.run: 链接:https://pan.baidu.com/s/1VI03aljuuGjTJwcFn9rh6w
2024-08-30 14:15:36 456B 网络协议
1
MIPI A-PHY V1.1.1协议是MIPI Alliance发布的一种物理层(PHY)接口规范,旨在为移动和物联网设备提供高速、低功耗的串行链路连接。A-PHY是MIPI Alliance针对长距离、高带宽通信需求而设计的一种高级PHY层协议,适用于摄像头、显示器、传感器等组件与主处理器之间的通信。 MIPI A-PHY的核心特点包括: 1. **长距离传输能力**:A-PHY设计考虑了在汽车、工业和其他应用场景中的长电缆或无线传输,能够处理超过一米的距离,甚至更远,而保持数据的完整性和稳定性。 2. **高性能**:该协议支持高数据速率,满足高清视频、图像处理和大数据传输的需求。它能够提供多种速率配置,以适应不同应用的性能要求。 3. **低功耗**:A-PHY采用了节能技术,如自适应调制编码(AMC)、睡眠模式和功率管理机制,以减少不必要的能量消耗,适应电池供电设备的需求。 4. **错误检测和恢复**:协议内包含了错误检测和纠正机制,确保数据的可靠性,即使在有噪声的环境中也能保证通信质量。 5. **灵活性**:A-PHY可以与MIPI Alliance的其他接口标准(如DSI和CSI)兼容,允许灵活的设计选择,并且支持未来的技术演进。 6. **版本更新**:v1.1.1版本是在v1.1的基础上进行了进一步的技术完善和优化,可能包括错误修复、性能提升和功能增强。 7. **知识产权保护**:文档声明为MIPI Alliance的版权,只对会员公司开放,且明确规定了实施者的权利和义务,以及关于免责声明的信息,强调了材料的“AS IS”性质,即不提供任何形式的明示或暗示保证。 A-PHY协议的实现通常涉及以下组件: - 发送器(Transmitter):将数据转换为适合长距离传输的信号。 - 接收器(Receiver):接收信号并恢复原始数据,同时进行错误检测和纠正。 - 控制器(Controller):管理和协调发送器和接收器的活动,处理协议层的事务。 - 电缆或无线介质:用于实际的数据传输。 在实际应用中,MIPI A-PHY V1.1.1协议的实施者需要注意与MIPI Membership Agreement和MIPI Bylaws一致,以遵循联盟的规定,并且要理解并应对文档中提到的预期技术变化,以保持解决方案的最新状态。同时,由于免责声明的存在,开发者需要自行承担使用此规格可能带来的风险和损失。
2024-08-30 10:35:31 4.17MB MIPI
1
USB3.0协议是USB(通用串行总线)接口技术的一个重要版本,它在2008年由USB Implementers Forum(USB IF)发布,旨在提高数据传输速度、增强电源管理,并提供更好的设备连接能力。这个协议规范的中文文档详细阐述了USB3.0的所有核心特性,对于理解和开发USB3.0设备或者驱动程序的工程师来说,是一份非常宝贵的资源。 USB3.0的最大传输速度是一个关键知识点。相比于USB2.0的480Mbps(60MB/s),USB3.0引入了SuperSpeed USB模式,理论最大传输速率可达5Gbps(625MB/s),这提升了近十倍的数据传输效率,使得大容量文件的传输变得更加迅速。这一高速传输是通过增加新的物理层(PHY)和协议层来实现的,包括更宽的数据通道和优化的信号处理技术。 USB3.0协议中包含了增强的电源管理机制。它支持设备在不同功耗状态之间快速切换,如休眠、暂停和活跃状态,有助于降低整体系统能耗。同时,USB3.0提供了更高的电源供给能力,主机可以向设备提供高达900mA的电流,比USB2.0的500mA有所提升,这对于需要更多电力的设备如硬盘驱动器或高功率外设非常有用。 再者,USB3.0具有向后兼容性,意味着新的USB3.0设备可以在旧的USB2.0接口上工作,尽管速度会降级到USB2.0的水平。这种设计考虑了市场的广泛接受度,避免了对现有基础设施的大量替换。 此外,USB3.0规范还包含了一些改进的硬件特性,如增强型差分信号(SuperSpeed Signaling)技术,它使用了8b/10b编码,以减少信号错误并提高数据完整性。还有就是所谓的“双角色设备”(Dual-Role Device, DRD),它既可以作为主机也可以作为设备,这为设备间的交互提供了更大的灵活性。 在文件"usbhostslave"中,可能包含了关于USB主机(Host)和设备(Device)角色的详细解释。USB主机负责控制数据交换,而设备则是连接到主机并响应其请求的部件。USB3.0协议规范详细描述了主机如何初始化设备、配置设备功能、进行数据传输以及处理设备状态变化等过程。 USB3.0协议规范是理解USB3.0技术核心的基石,它涵盖的高速传输、电源管理、向后兼容性和硬件特性等内容,对于开发者和工程师而言都是至关重要的知识点。通过深入学习这份中文文档,可以更好地掌握USB3.0的原理和应用,从而在实际项目中得心应手。
2024-08-29 18:01:33 19.77MB usb
1
标题中提到的“可模拟的无证书的两方认证密钥协商协议”,结合描述中的“研究论文”,可以得知本文是一篇学术论文,作者们提出了一个新的密钥协商协议模型,该模型的特点是无证书(certificateless)且可模拟(simulatable),应用于两方认证(two-party authenticated)。无证书意味着该协议不需要传统的公钥证书来验证用户身份,这与传统的使用公钥基础设施(PKI)或基于身份的密码学(identity-based cryptography)有所不同。传统的PKI方法存在证书管理的负担,而基于身份的密码学有密钥托管问题(key escrow problem)。 关键词包括信息安全性、协议设计、无证书密码学、认证密钥协商以及可证明安全性。这些关键词为我们展示了文章的研究领域和主要内容。信息安全性涉及保护数据和信息免遭未授权的访问、使用、泄露、破坏、修改、检查、记录或破坏,而协议设计是指制定协议以实现特定目标的过程,本论文中的协议目标就是密钥协商。 无证书密码学(CLC)是近来引入的一种密码学分支,旨在缓解传统公钥密码体系和基于身份的密码体系的局限性。无证书密码学方案通常包括一个半可信的密钥生成中心(KGC),它负责为用户生成部分私钥,用户结合部分私钥和自己选择的秘密值生成完整的私钥,这样既避免了密钥托管问题,又简化了证书管理。 认证密钥协商协议(AKA)是一种密钥协商协议的增强版,它能够防止主动攻击。与普通的密钥协商不同,AKA通常需要确保参与方的身份是真实可信的。AKA协议在设计时需要考虑到安全性、效率和实用性。为了保证协议的可模拟性,作者们必须证明在标准的计算假设(如计算性Diffie-Hellman(CDH)和双线性Diffie-Hellman(BDH))下,协议是安全的。 在论文的引言部分,作者们首先介绍了密钥协商(KA)的重要性,它作为一种基础的密码学原语,允许两个或更多的参与方在开放网络上协商出一个秘密的会话密钥。每个参与方都可以加密消息,只有特定的其他参与方才能解密。然后,作者介绍了认证密钥协商(AKA)的概念,这种协议在协商密钥的基础上增加了防止主动攻击的功能。为了达到这一目的,AKA可以通过公钥基础设施(PKI)或者基于身份的密码体系实现。然而,正如之前提到的,它们各自有其局限性。 接下来,作者们提出了一个新的AKA协议的安全模型,这个模型使用了无证书密码学。在这个模型的基础上,他们进一步提出了一个可模拟的无证书两方认证密钥协商协议。该协议的提出,旨在解决传统模型的缺陷,并通过证明安全性来展示其实用性。协议仅需要每个参与方进行一次配对操作和五次乘法运算,因此效率和实用性都较高。 在协议的安全性方面,作者们强调了安全性证明是在标准计算假设下完成的,这表明该协议在理论上是安全的。CDH和BDH假设都是在密码学中常用的困难问题,用于保证协议在面对计算攻击时的健壮性。 作者们指出,其协议之所以被称为“可模拟”的,是因为它能够提供一定程度的模拟能力,模拟者可以在不知道私钥的情况下,模拟协议执行的某些方面。这种能力在密码学协议中是很重要的,因为它可以用于实现一些高级别的安全属性。 通过对以上内容的解读,我们可以理解到这篇论文的研究价值所在:它提出了一种结合了无证书密码学优势和认证密钥协商功能的新协议,并且证明了该协议在理论上是安全的,同时在实践中也是高效和实用的。这对于解决现有认证密钥协商方案中的一些问题,比如证书管理和密钥托管,提供了新的思路。
2024-08-29 16:33:01 236KB 研究论文
1