内容概要:本文详细介绍了单目视觉结构光三维重建的Matlab实现,涵盖了从标定到点云生成的全过程。首先讨论了标定数据的正确加载方式,强调了内参矩阵和旋转平移矩阵的重要性。接着深入探讨了四步相移法的相位计算,包括数据类型的转换、相位范围的规范化以及中值滤波去噪。随后讲解了格雷码解码的关键步骤,如动态阈值设置和边界误判处理。此外,还介绍了多频外差法的相位展开技术和点云生成的具体实现,包括深度计算和坐标系转换。文中分享了许多实践经验和技术细节,帮助读者避免常见的陷阱。 适合人群:具有一定编程基础并希望深入了解结构光三维重建技术的研究人员和工程师。 使用场景及目标:适用于需要进行单目视觉结构光三维重建的应用场景,如工业检测、医疗影像、虚拟现实等领域。目标是掌握从标定到点云生成的全流程技术,提高重建精度和效率。 其他说明:本文不仅提供了详细的代码实现,还分享了很多实用的经验和技巧,帮助读者更好地理解和应用相关技术。
2025-04-22 16:31:59 1.06MB
1
"光伏混合储能系统VSG并网运行的小信号模型研究:构网型变流器、虚拟同步机与混合储能HESS的协同优化",光伏混合储能VSG并网运行,构网型变流器, 同步机 优质仿真资料 混合储能HESS:蓄电池+超级电容器 电压补偿 削峰填谷、一次调频、功率指令跟随 光伏储能参与一次调频、功率平抑、 直流母线电压控制;MPPT最大功率跟踪控制 构网型储能,光伏、微电网、新能源、同同步机、VSG并网,小信号模型 ,光伏混合储能; VSG并网运行; 构网型变流器; 虚拟同步机; 混合储能HESS; 电压补偿; 削峰填谷; 一次调频; 功率平抑; MPPT最大功率跟踪控制; 小信号模型,"混合储能系统与VSG并网:光伏构网型变流器与小信号模型分析"
2025-04-21 16:16:01 157KB
1
基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,含风电光伏光热电站电力系统N-k安全优化调度模型 关键词:N-K安全约束 光热电站 优化调度 参考文档:《光热电站促进风电消纳的电力系统优化调度》参考光热电站模型; 仿真平台: MATLAB +YALMIP+CPLEX 主要内容:代码主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。 同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。 以14节点算例系统为例,对模型进行了系统性的测试,效果良好。 ,N-K安全约束; 光热电站; 优化调度; 电力系统; 弃风弃光; 14节点算例系统,基于N-K安全约束的光热电站优化调度模型研究
2025-04-20 22:21:44 639KB 数据仓库
1
Matlab代码:含热网的综合能源系统(IES)优化运行 风电、光伏、CHP机组(燃气燃煤)、燃气锅炉、火力发电机组,吸收式制冷机、电制冷机、蓄电池,蓄热罐等设备 负荷类型:冷、热、电 优化目标:IES(综合能源系统)的运行成本最小 成本主要包括:燃气成本、运行维护成本,碳排放惩罚成本、可再生能源丢弃惩罚成本 优化算法:混合整数线性规划,凸优化,非线性向线性的转化等 优化结果:得到系统的最优调度方案及最小运运行成本。 程序注释详细,有助于提高IES优化程序编写的能力 综合能源系统(IES)是一个集成了多种能源产生、转换、存储和消费设施的系统。在这些设施中,包括了风力发电、光伏发电、联合循环发电机组(CHP),它们可以使用燃气或燃煤作为燃料。此外,还包括了传统的燃气锅炉和火力发电机组,以及用于电力和热能管理的设备,例如吸收式制冷机、电制冷机、蓄电池和蓄热罐等。该系统的负荷类型主要是冷、热、电三种,对应着我们的日常生活中最为常见的能源使用形式。 优化目标是使得IES的运行成本最小化,这其中包括了燃气成本、运行和维护成本、碳排放带来的环境成本以及对可再生能源未能充分利用的惩罚成本。为了实现这一目标,研究者们采用了一系列优化算法,如混合整数线性规划、凸优化等。这些算法能够将非线性问题转化为线性问题进行处理,提高求解的效率和准确性。 优化的结果是获得一个最优的调度方案,这个方案能够指导系统的各个部分如何协同工作以达到最小的运行成本。这个过程涉及到对多种设备运行状况的统筹考虑,包括何时启动、关闭设备,如何分配负载,以及如何高效地利用存储设备。 此外,该Matlab代码的程序注释非常详细,这对于理解代码逻辑、提高IES优化程序编写的能力具有重要的帮助作用。注释清晰地解释了每一部分代码的功能和算法选择的原理,使得其他研究者或工程师在阅读和修改代码时更加容易上手,同时也有助于代码的维护和后续的开发工作。 在探讨电动工具中的电钻与电扳手控制方案的文档中,我们可以了解到电动工具工作原理及应用,虽然与IES的主题不同,但反映出文件集合中包含不同领域的技术资料。类似的,通过分析其他文件内容,我们可以获取IES系统优化运行的背景介绍、风电与光伏机组在IES中的具体应用、基于IES优化运行的技术探索等多方面的信息。这些内容对于构建一个全面的IES优化知识体系至关重要。 总体来说,这些文件提供了一个全面的视角来理解和优化综合能源系统。通过深入分析这些资料,可以对IES的构建、运行和优化有更深层次的认识,为实现更加高效和可持续的能源管理提供理论和实践的支持。
2025-04-18 22:33:42 51KB xhtml
1
探索高斯光束、超高斯光束与贝塞尔光束在COMSOL中的添加方法:全面解析与文献指引,助力科研工作者的技术突破,如何将高斯光束、超高斯光束和贝塞尔光束添加至COMSOL仿真中的实践指南及文献探讨,高斯光束、超高斯光束、贝塞尔光束各种激光形状如何添加到COMSOL中,只要有文献都可实现,一直以为这个不是什么难点,发现有挺多不会做的。 ,高斯光束; 超高斯光束; 贝塞尔光束; 文献添加方法; 无需为难点; COMSOL 建模,在COMSOL中实现高斯、超高斯与贝塞尔光束:文献指南与解析 在科学研究与技术开发中,光学模拟软件如COMSOL Multiphysics扮演着至关重要的角色,它允许研究人员在计算机上构建复杂的物理模型,并对其性能进行详细的分析。高斯光束、超高斯光束以及贝塞尔光束是激光技术中的基本概念,它们各自拥有不同的物理特性及应用领域。高斯光束在理想情况下具有最小的光束扩展,超高斯光束在光束的中心部分比高斯光束更平坦,而贝塞尔光束则在传播过程中保持稳定的相位结构,具有无衍射特性。 高斯光束是许多激光应用中最常见的光束模式,其强度分布遵循高斯函数,具有最小的聚焦半径和较高的光束质量。超高斯光束的特点是其强度分布比传统高斯光束更加平坦,中心部分更宽,边缘则急剧下降。贝塞尔光束是另一类特殊的光束,它在传播过程中保持其相位结构不变,因此不会像高斯光束那样逐渐发散,能够在一定范围内保持稳定的光束直径。 在COMSOL中模拟这些光束,首先需要对激光的物理特性有深入的理解,包括其波长、光束直径、发散角等参数。通过在COMSOL中正确地设置这些参数,研究人员可以构建起各种激光束模型,模拟它们在不同条件下的行为。此外,通过与实验数据进行比对,还可以调整模型参数,确保模拟结果的准确性。 这些光束的建模通常需要对COMSOL中的几何建模、光学模块及数值计算方法有一定的掌握。例如,在COMSOL中添加高斯光束可能需要用户创建一个具有特定形状和材料属性的模型,并施加适当的边界条件以模拟光束的传播特性。超高斯光束和贝塞尔光束的添加则可能需要更复杂的设置,如使用多阶高斯函数或特殊相位函数来定义它们的强度分布。 除了技术操作之外,高斯光束、超高斯光束与贝塞尔光束的COMSOL仿真还涉及一系列的文献研究。这包括研究前人在类似模型上的工作,以及了解他们是如何设置模型参数、解释结果,和进行实验验证的。通过阅读相关文献,科研工作者可以更快地掌握各种光束模型的建立方法,并在此基础上进行创新和优化。 高斯光束、超高斯光束和贝塞尔光束在COMSOL中的模拟对于激光技术的研究和开发具有重要意义。它不仅要求研究者具备扎实的理论知识,还需要他们能够熟练运用仿真软件,以及能够理解并应用相关领域的研究文献。通过这些方法,科研工作者可以在理论研究与实际应用之间架起一座桥梁,实现技术上的突破。
2025-04-18 15:41:23 974KB xbox
1
基于拉丁超立方采样的k-means算法改进:风电光伏场景缩减与不确定性模拟,基于拉丁超立方场景生成和改进k-means算法的场景缩减 风电、光伏场景不确定性模拟,由一组确定性的方案,生成1000种光伏场景,为了避免大规模风电,光伏场景造成的计算困难问题,针对k-means的初始聚类中心随的问题做出改进,并将场景削减至5个,运行后直接给出生成的场景、缩减后的场景及缩减后各场景概率。 可移植以及可应用性非常强 适合初学者进行学习使用程序注释清晰易懂 ,基于拉丁超立方场景生成; 改进k-means算法; 场景缩减; 风电、光伏场景不确定性模拟; 生成光伏场景; 避免计算困难; 初始聚类中心改进; 场景削减; 注释清晰易懂。,基于拉丁超立方与改进k-means的场景缩减算法:风电光伏不确定性模拟
2025-04-18 11:51:40 173KB 开发语言
1
CCM(连续电流模式)交错反激式光伏并网微逆变器在光伏并网发电系统中发挥着重要作用。微逆变器位于整个系统中,承担着将光伏板产生的直流电转换为可并入电网的交流电的角色。与集中式逆变器相比,微逆变器可以单独地为每块光伏电池板进行最大功率点跟踪(MPPT),从而提升整个系统的能源利用率。微逆变器的核心技术之一就是反激式变换器,该技术具有结构简单、成本低、可靠性高等特点。 在反激式微逆变器中,存在两种工作模式:电流断续模式(DCM)和电流连续模式(CCM)。在CCM模式下,逆变器的电流应力更小,开关频率低,效率相对较高。不过,CCM模式下的微逆变器在控制输入到并网电流的传递函数中存在右半平面零点,这对闭环系统的带宽和动态性能产生了负面影响,使得控制难度增加。 为了解决这些问题,研究者们提出了建立整体四阶模型的方法。该方法能够准确描述系统控制输入到并网电流传递函数中存在的右半平面零点位置,提高控制设计的精确性和控制效果。此外,该方法能够修正已有的建模和控制方法中因参数不匹配而导致的负载不平衡问题,从而提升系统整体性能。通过这种建模和控制策略,研究者们设计并实验验证了一台250W的微逆变器实验样机,证明了这种方法的有效性。 在建模方面,文章分析了交错反激式微逆变器的零极点分布情况,并对系统的工作原理和动态建模进行了详细阐述。作者指出,交错技术的应用可以有效提高光伏电池板的利用率,降低系统损耗,减小电流纹波,从而具有广泛的应用前景和研究价值。 为了深入理解该研究,我们还需要掌握以下几点: 1. 光伏并网发电技术的基础知识:包括太阳能的能量转换原理、最大功率点跟踪(MPPT)的概念和重要性。 2. 反激式变换器工作原理:研究其工作在DCM和CCM模式下的区别及其优缺点。 3. 交错技术在微逆变器中的应用:了解交错技术如何提升系统性能并降低损耗。 4. 系统控制输入到并网电流传递函数的概念:特别是右半平面零点对系统性能的影响。 5. 四阶模型建立方法:研究如何建立CCM交错反激式微逆变器的四阶模型,并分析其零极点分布。 6. 控制设计策略:探讨电流闭环控制、前馈控制和均流控制相结合的控制方法如何应用于模型中。 7. 实验验证:分析250W微逆变器实验样机的测试结果,并评估建模和控制策略的有效性。 通过本文的研究,研究者和工程师可以更深入地了解CCM交错反激式微逆变器的建模和控制技术,从而推动相关技术的进步和应用发展。同时,该研究为电力系统自动化领域,特别是在光伏并网发电系统中提供了重要的技术支持。
2025-04-17 23:38:24 2.01MB 研究论文
1
基于格雷码技术的结构光三维重建源码详解:MATLAB环境下的实现与应用,基于格雷码结构光的三维重建MATLAB源码解析与实现,基于格雷码的结构光三维重建源码,MATLAB可以跑通 ,基于格雷码;结构光;三维重建;源码;MATLAB,基于格雷码算法的MATLAB结构光三维重建源码 格雷码技术是一种用于提高数据传输效率和准确性的编码方法,尤其在数字通信和计算机系统中应用广泛。其核心思想是将连续的数值通过一种特殊的编码方式转换为一系列的二进制数,相邻数值的编码仅有一位二进制数不同,这种特性极大地减少了数据在传输过程中发生错误的可能性。在三维重建领域,格雷码技术与结构光结合,形成了一种高效的测量手段,广泛应用于机器视觉和光学测量领域。 结构光技术是指利用预先设计好的图案(通常是光栅或条纹)投射到物体表面,由于物体表面的不规则性,投射的图案会发生变形,通过分析变形前后的图案,可以计算出物体表面的三维信息。格雷码在此技术中起到了至关重要的作用,因为它的单比特变化特性使得编码的图案能以非常高的精度进行解码,从而获得更为精确的三维坐标信息。 MATLAB是一种高性能的数值计算环境和第四代编程语言,广泛应用于算法开发、数据可视化、数据分析以及数值计算。在三维重建的研究和开发中,MATLAB提供了一套完整的工具箱,使得科研人员和工程师可以方便地实现复杂的数学算法和数据处理流程。在基于格雷码的结构光三维重建中,MATLAB不仅能进行快速的算法实现,还能提供强大的图形界面,方便进行结果的展示和分析。 通过深入理解这些技术文件,我们可以了解到格雷码在结构光三维重建中的应用原理,MATLAB环境下如何实现格雷码的编码和解码过程,以及如何将这些理论和技术应用于实际的三维重建项目中。文档内容可能涵盖了从基本理论的介绍,到具体算法的实现细节,再到实际案例的分析和源码的具体使用方法。 此外,文档可能还包含了技术博客文章,这些博客文章通过通俗易懂的语言,介绍了格雷码技术的背景、应用领域、优势以及在结构光三维重建中的具体应用实例,使得没有深厚数学背景的读者也能够理解和欣赏这种技术的魅力。通过这些技术博客文章,初学者可以快速入门,并逐步深入学习和掌握格雷码在三维重建领域的应用。 基于格雷码技术的结构光三维重建源码详解和实现对于理解三维重建技术的原理与应用具有重要意义。它不仅为专业研究人员提供了实践的平台,也为企业提供了实现高精度三维测量的可能。同时,文档中提及的源码和案例分析为学习者提供了学习和实践的机会,有助于推动三维重建技术的发展和应用。
2025-04-17 20:12:36 2.78MB
1
光通信是一种利用光信号传输信息的技术,其在现代通信网络中扮演着至关重要的角色。PPM(Pulse Position Modulation,脉冲位置调制)是一种常见的光通信调制技术,它通过改变脉冲的位置来编码信息。本研究深入探讨了PPM调制解调系统的设计与仿真,旨在提高通信效率和传输质量。 PPM调制是基于时间的调制方式,其基本原理是将信息数据转换为脉冲序列,并根据信息的值改变脉冲在时间轴上的位置。在光通信中,这种调制方式可以有效地利用光信号的带宽资源,特别是在长距离传输和高数据速率的需求下,PPM展现出了优越的性能。 设计一个PPM调制解调系统涉及多个关键步骤。需要进行信息源编码,将原始数据转化为适合PPM调制的格式。接着,选择合适的调制阶数,例如2-PPM、4-PPM等,阶数越高,能传输的信息量越大,但对系统的要求也更高。然后,通过特定算法确定每个脉冲相对于参考时刻的位置,这个过程就是调制。在接收端,解调器通过检测和比较接收脉冲的位置来恢复原始信息。 在仿真研究中,通常使用像Matlab或Optisystem这样的专业软件工具,模拟实际通信环境中的信号传输、衰减、噪声等因素。这些仿真可以帮助研究人员评估PPM系统的性能,如误码率、信噪比和传输距离等。通过调整系统参数,可以优化系统的性能,找出最佳的设计方案。 此外,PPM调制解调系统还需要考虑实际应用中的诸多问题,如光源的稳定性、光电探测器的响应速度、信道的非线性效应以及多径传播引起的脉冲展宽等。解决这些问题通常需要采用先进的信号处理技术,如均衡器、前向纠错编码等。 光通信PPM调制解调系统的仿真研究对于推动光通信技术的发展至关重要。通过仿真,我们可以预估系统在实际环境中的表现,预测潜在问题,并提出解决方案。这一领域的研究不仅有助于提高通信系统的性能,也为未来高速、大容量、低功耗的光通信网络提供了理论和技术支撑。 "光通信PPM调制解调系统设计与仿真研究"涵盖了信息编码、调制解调原理、系统优化和性能评估等多个方面,是理解并改进光通信系统不可或缺的一部分。这份综合文档将详细阐述这些概念和技术,为读者提供深入的理论知识和实践指导。
2025-04-15 14:48:03 1.97MB 调制解调 设计与仿真
1
### 芯片资料光模块上的LD驱动芯片UX2222 #### 一、概述 UX2222是一款完整的互补金属氧化物半导体(CMOS)激光驱动器,适用于小型可插拔(SFP)/小型化固定式封装(SFF)应用,支持的数据传输速率范围从155Mbps到2.125Gbps。该芯片完全符合SFP多源协议(MSA)的时间要求以及SFF-8472发射诊断标准。UX2222内部集成了自动功率控制(APC)反馈环路、带有温度补偿功能的参考电压发生器以及安全逻辑电路。 #### 二、特性与应用 **1. 特性** - **电源电压**:支持+3.3V或5V的电源供电。 - **自动功率控制**:通过监测光电二极管来维持恒定的平均光功率,即使在激光阈值电流随温度变化时也能保持稳定。 - **温度补偿调制电流**:提供可选的温度补偿功能来补偿激光二极管消光比随温度的变化。 - **SFP MSA和SFF-8472标准兼容**:全面满足SFP MSA规定的时间要求及SFF-8472发射诊断要求。 - **监测功能**:包括偏置电流监测和光电流监测。 - **适用激光类型**:适用于法布里-珀罗(FP)、分布反馈(DFB)和垂直腔面发射(VCSEL)等类型的激光器。 **2. 应用** UX2222广泛应用于光纤通信系统中的数据传输,特别是在SFP/SFF等小尺寸可插拔模块中作为激光驱动器的核心组件。 #### 三、关键部件及功能 **1. 自动功率控制(APC)反馈环路** 自动功率控制环路能够根据光电二极管反馈信号调节激光二极管的驱动电流,从而确保激光器输出的光功率保持恒定。这一功能对于长时间运行下的稳定性至关重要。 **2. 参考电压发生器与温度补偿** UX2222内置有参考电压发生器,用于为芯片内部电路提供稳定的参考电压。此外,该发生器还具备温度补偿功能,能够在不同工作温度下保持电压的稳定性,这对于激光器性能的稳定至关重要。 **3. 安全逻辑电路** 为了提高系统的安全性,UX2222还配备了安全逻辑电路。这些电路包括但不限于: - **传输禁用控制**:通过TX_DISABLE引脚控制激光器的开启与关闭,当此引脚处于高电平时,激光器输出被禁止。 - **偏置电流监测**:通过BC_MON引脚监测激光器的偏置电流,有助于实时了解激光器的工作状态。 - **光电流监测**:通过PC_MON引脚监测光电二极管的电流,进一步确保光功率的稳定性。 - **故障指示**:TX_FAULT引脚提供单点锁定故障输出,用于指示任何潜在的故障。 **4. 输出电流** UX2222提供了互补输出电流,这意味着它能够同时驱动正负两个方向的电流,以实现更高效且稳定的激光器驱动。 #### 四、引脚配置与功能 **1. MODTC引脚** 连接一个电阻至地,可以设置调制电流IMOD的温度系数,当温度高于由Rtth设定的阈值时生效。 **2. VCC引脚** 提供+3.3V或5V的电源电压。 **3. INP与INN引脚** 分别为非反相数据输入和反相数据输入端口。 **4. TX_DISABLE引脚** 传输禁用控制引脚,采用TTL电平。当此引脚处于高电平或未连接时,激光输出被禁用;当此引脚处于低电平时,激光输出启用。 **5. PC_MON引脚** 用于光电二极管电流监测的引脚。 **6. BC_MON引脚** 用于偏置电流监测的引脚。 **7. SHUTDOWN引脚** 关断控制引脚,用于整体关断芯片功能。 **8. TX_FAULT引脚** 故障指示引脚,用于指示任何潜在的故障。 **9. BIAS引脚** 提供偏置电流给激光二极管。 **10. OUTP与OUTN引脚** 分别提供正向和负向的输出电流。 **11. MD引脚** 模式选择引脚,用于配置激光驱动器的工作模式。 **12. RTTH引脚** 温度阈值设置引脚,用于设定温度阈值。 **13. MODSET引脚** 调制设置引脚,用于设置调制电流的大小。 **14. APCSET引脚** APC设置引脚,用于设置自动功率控制的目标光功率水平。 **15. APCFILT1与APCFILT2引脚** APC滤波器引脚,用于外部滤波网络,改善APC环路响应速度。 #### 五、总结 UX2222是一款高性能的激光驱动芯片,适用于高速光通信系统中的SFP/SFF模块。其强大的功能特性,如自动功率控制、温度补偿、安全逻辑电路等,使其成为光纤通信领域中不可或缺的关键器件之一。通过合理的引脚配置和外接元件选择,UX2222能够有效提升光通信系统的稳定性和可靠性。
2025-04-15 01:47:37 587KB
1