综合了多位aws在职朋友的笔试和面试经历,多年的题目。但是最近有没有变化就不知道了。应该还能帮到需要的朋友。想进西部数据或AWS的朋友加油!
1
VxWorks_7_Third-Party_Software_Support__SR0620.pdf
2022-07-08 18:00:46 1.15MB vxworks
1
唯美聊天 vue-beautiful-chat提供了一个类似于内部通信的聊天窗口,可以轻松将其免费包含在任何项目中。 它不提供消息传递功能,仅提供视图组件。 vue-beautiful-chat正在移植到vue的react-beautiful-chat (可在找到) 前往 :down_arrow_selector: 产品特点 可订制 后端不可知 自由 目录 安装 $ yarn add vue-beautiful-chat 例 import Chat from 'vue-beautiful-chat' Vue . use ( Chat ) < template> < div> < beautiful-chat
2022-07-06 11:53:15 724KB support chat marketing vuejs
1
MATLAB白细胞计数代码支持数据科学练习 数据集support.tsv包含来自SUPPORT(了解预后偏好结果和治疗风险的研究)的1000名重症住院成年人的随机样本。 使用数据集,开发一个预测医院死亡的模型。 请提供用于开发模型的任何代码,对结果的简短讨论以及在处理数据时所做的任何假设或简化。 您可以使用任何开源语言(例如R,Python,Julia)开发解决方案。 在使用专有软件(例如SAS,Stata,MATLAB)之前,请先与我们联系。 名称 标签 年龄 年龄 死亡 截至NDI日期(1994年12月31日)之前的任何时间死亡 性别 性别 医院死亡 住院死亡 斯洛 从研究进入到出院的日期 时间 随访天数 dzgroup 诊断组(分类) dzclass 诊断类(分类) num.co 合并症数 教育 受教育年限 收入 收入(分类) 斯科马 支持基于格拉斯哥D3的昏迷评分 收费 住院费用 托斯特 RCC总费用 托姆斯特 总微成本 Avtisst 平均TISS,第3-25天 种族 种族(分类) 吝啬的 平均动脉血压(第3天) 世界银行 白细胞计数(第3天) rt 心率(第3天) 回应 呼
2022-06-27 15:55:15 57KB 系统开源
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:03:37 11.6MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:03:00 12.47MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:01:35 12.13MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 10:54:12 15.06MB kernel machine learning svm
1
apple mobile device support
2022-06-25 20:55:29 592KB apple mobile device support
1
通过多模型监督学习算法进行收入预测 寻找慈善捐助者 胡安·罗隆(Juan E.Rolon),2017年 项目概况 在此项目中,我采用了几种监督算法,以使用从1994年美国人口普查中收集的数据准确地预测个人收入。 我们执行各种测试过程,以从初步结果中选择最佳候选算法,然后进一步优化该算法以对数据进行最佳建模。 此实现的主要目标是构建一个模型,该模型可以准确地预测个人的收入是否超过50,000美元。 在非营利机构中,组织可以靠捐赠生存,这种任务可能会出现。 了解个人的收入可以帮助非营利组织更好地理解要请求的捐赠额,或者是否应该从一开始就伸出援手。 虽然直接从公共来源确定个人的一般收入等级可能很困难,但我们可以从其他公共可用功能中推断出此价值。 该项目是从Udacity获得机器学习工程师Nanodegree所需条件的一部分。 安装 此项目需要Python 2.7和已安装的以下Python
1