STM32F103是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。在这个项目中,它被用来作为主控芯片,通过IIC(Inter-Integrated Circuit,也称为I²C)通信协议与TCA9555芯片进行通讯,以实现对大量GPIO(通用输入/输出)口的扩展。 TCA9555是一款由Texas Instruments制造的I²C接口的多通道数字输入/输出扩展器,它能提供16个独立的数字输入/输出线。通过连接两颗TCA9555,总共可以扩展出32个IO口。然而,描述中提到的“265路IO口”可能是笔误,因为单个TCA9555芯片最多只能提供16路,两颗则是32路。如果确实需要265路,可能需要使用更多的TCA9555并行连接,并通过I²C总线进行管理。 IIC是一种低速、两线制的串行通信协议,由Philips(现NXP Semiconductors)开发。在STM32F103上实现IIC通信需要配置相应的GPIO引脚为IIC模式,通常SCL(Serial Clock)和SDA(Serial Data)是两个必要的引脚。STM32的HAL库或LL库提供了方便的API函数来设置这些引脚,初始化IIC外设,以及发送和接收数据。 在项目实施过程中,首先需要配置STM32F103的时钟系统,确保IIC接口的时钟能够正常工作。接着,设置GPIO引脚为IIC模式,并启用IIC外设。然后,通过编程设定IIC的相关参数,如时钟频率、从设备地址等。当配置完成后,可以利用IIC协议发送读写命令到TCA9555,以控制其IO口的状态。 TCA9555具有中断功能,可以根据输入状态改变产生中断请求,这对于实时监控IO口变化非常有用。在STM32F103上,需要配置中断服务程序来处理这些中断事件。同时,TCA9555的每个IO口都可以单独配置为输入或输出,并且有独立的中断标志位,这使得它非常适合用于复杂的系统,其中需要灵活控制和监测大量GPIO口。 项目中可能包含的代码文件可能有:配置STM32F103 IIC的初始化函数、发送和接收数据的函数、设置和读取TCA9555 IO口状态的函数,以及中断处理程序。通过对这些代码的详细分析和理解,开发者可以学习到如何在实际项目中应用STM32F103与外部扩展芯片进行通信,以及如何管理和控制大量的GPIO口。 总结来说,这个项目涉及了嵌入式系统设计中的多个关键知识点,包括STM32F103微控制器的使用、C语言编程、IIC通信协议的实现、GPIO口的扩展以及中断处理。对于想要深入理解和实践嵌入式系统设计的工程师而言,这是一个极好的学习资源。
2025-04-09 16:34:06 9.49MB stm32 arm 嵌入式硬件
1
ARMCC(ARM Compiler Compiler)和ARMCLANG是ARM公司推出的两种不同的编译器工具链,用于生成ARM架构处理器上运行的高效代码。ARMCC长期以来一直是ARM官方推荐的编译器之一,它基于经典的ARM编译器架构。而ARMCLANG是基于开源的LLVM编译器基础设施,它在ARMv6架构的设备上提供了更多优化与支持。 ARMCC编译器主要用于ARMv5架构的处理器,它能够生成针对不同ARM核心(如Cortex-M、Cortex-R和经典ARM处理器)的优化代码。ARMCC以其代码效率和稳定性著称,是嵌入式开发领域中广泛使用的一种编译器。它支持C、C++以及汇编语言,并且具备丰富的编译选项和优化级别,能够满足不同复杂度和性能要求的项目需求。同时,ARMCC还支持一些特定的ARM扩展,比如DSP指令集,使得在特定应用场合下能够获得更好的性能表现。 ARMCLANG编译器则是在ARMCC基础上发展起来的,它适用于ARMv6及更高版本的处理器。ARMCLANG结合了ARMCC的编译技术与LLVM的后端优化技术,能够提供与ARMCC相当或更优的代码效率,同时在编译速度上通常要比ARMCC更快。ARMCLANG支持C、C++、Objective-C和Objective-C++语言,并且可以与ARMCC编译器在某些情况下混用,从而在编译链中提供更大的灵活性。此外,ARMCLANG支持最新的编程语言标准,比如C++11、C++14等,使得开发者能够利用现代编程语言特性进行高效开发。 “KEIL ARMCC和ARMCLANG下载”这个标题意味着用户可以在KEIL的官方资源中找到ARMCC和ARMCLANG两种编译器工具链的下载链接。KEIL是行业内广泛使用的一款集成开发环境(IDE),主要用于ARM处理器的嵌入式开发。它提供了一系列的开发工具,包括编译器、调试器、模拟器等,大大简化了嵌入式软件的开发流程。通过KEIL IDE,开发者可以方便地管理项目,编译代码,并进行硬件调试。支持ARMCC和ARMCLANG编译器意味着KEIL能够适应不同版本ARM处理器的开发需求,为开发者提供灵活多样的选择。 【备份下载】这个描述则是强调了下载的重要性。在进行软件或工具的下载时,为了防止因网络问题或服务器故障导致的下载失败,或者为了在不同的设备或场合之间迁移项目,备份下载变得尤为重要。这不仅能够保证软件能够被安全地保存下来,同时也便于在出现问题时迅速恢复和继续工作。 总结起来,ARMCC和ARMCLANG是针对ARM架构处理器的不同版本编译器,它们在性能、优化和语言支持上各有优势。KEIL作为集成开发环境,整合了这两种编译器,为嵌入式软件开发者提供了一个功能全面、使用方便的工作平台。备份下载则是在这个过程中保证项目稳定性和数据安全的一个重要步骤。
2025-04-09 15:26:20 320.2MB keil arm
1
在本教程中,我们将深入探讨如何在基于ARM架构的鲁班猫LubanCat设备上,搭载Rockchip RK3588芯片的Ubuntu 20.04操作系统中,源码编译并安装Qt 5.12.5。这个过程涉及到Linux环境的配置、Qt的源码获取、编译过程以及最后的安装步骤。让我们逐步了解每个环节。 你需要确保你的系统已经更新到最新版本,并且安装了必要的依赖库。在Ubuntu终端中运行以下命令: ```bash sudo apt update sudo apt upgrade sudo apt install build-essential libx11-dev libfontconfig1-dev libicu-dev libxcb1-dev libxext-dev libgl1-mesa-dev libegl1-mesa-dev libgles2-mesa-dev libasound2-dev libjpeg-dev libpng-dev libtiff5-dev libxml2-dev libzip-dev libgstreamer-plugins-base1.0-dev gstreamer1.0-plugins-base-apps libgstreamer-plugins-bad1.0-dev gstreamer1.0-plugins-bad libgstreamer-plugins-good1.0-dev gstreamer1.0-plugins-good libgstreamer-plugins-ugly1.0-dev gstreamer1.0-plugins-ugly libgstreamer1.0-dev libgstreamer-apps-1.0-dev ``` 接下来,从Qt官方仓库下载Qt 5.12.5的源代码。你可以访问官方网站或者使用wget命令: ```bash wget https://download.qt.io/official_releases/qt/5.12/5.12.5/single/qt-everywhere-src-5.12.5.tar.xz ``` 解压下载的文件: ```bash tar -Jxf qt-everywhere-src-5.12.5.tar.xz cd qt-everywhere-src-5.12.5 ``` 为了适应ARM架构,我们需要配置编译选项。在构建之前,运行以下命令: ```bash ./configure -prefix /usr/local/qt5 -sysconfdir /etc -confirm-license -opensource -platform linux-g++ -host arm-linux-gnueabihf -qt-xcb -no-pch -no-rpath -reduce-relocations -skip qtwebengine -v ``` 配置完成后,进行编译: ```bash make -j$(nproc) ``` 这一步可能需要一段时间,因为它会编译所有Qt模块。编译完成后,执行安装步骤: ```bash sudo make install ``` 安装完成后,为了能在系统中正常使用Qt,还需要更新环境变量。打开`~/.bashrc`文件并添加以下行: ```bash echo 'export PATH=$PATH:/usr/local/qt5/bin' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/qt5/lib' >> ~/.bashrc source ~/.bashrc ``` 现在,你可以验证Qt 5.12.5是否成功安装,通过运行`qmake -v`,你应该能看到Qt 5.12.5的信息。 这个过程对于开发者来说是必要的,特别是当目标平台不支持预编译的二进制包,或者需要对Qt进行特定的定制时。通过源码编译,可以确保Qt与你的系统和硬件配置完全兼容,同时也能更好地控制编译选项和库的版本。 注意:在实际操作中,可能会遇到各种问题,如依赖库缺失、编译错误等,这时需要根据错误信息查找解决方案,可能需要安装额外的库或调整配置选项。此外,由于Rockchip RK3588是一个ARM64架构的处理器,所以确保所有的编译工具链都是针对该架构的。如果你在过程中遇到困难,可以参考提供的"ubuntu-18.04上通过源码来编译及安装Qt-5.12库.html"文件,它可能包含更详细的步骤和解决常见问题的方法。
2025-04-08 13:28:45 6KB linux ubuntu
1
好不容搞到的Uos系统Fsearch V0.2.3 文件搜索工具deb安装包,arm芯片组的。类似windows下的everything,需要的下载吧!
2025-04-07 19:25:36 407KB
1
源码开放的嵌入式系统软件分析与实践:基于SkyEye和ARM开发平台,电子书
2025-04-05 18:44:59 14.31MB 源码 嵌入式系统 电子书
1
源码开放的嵌入式系统软件分析与实践:基于SkyEye和ARM开发平台,电子书
2025-04-05 18:43:13 14.31MB 源码 嵌入式系统 电子书
1
手臂工具链 针对OS X主机和arm-linux-gnueabihf目标的工具链,针对cortex-a7(Raspberry Pi 2)进行了优化。 检出到/ usr / local / arm-cortex_a7-linux-gnueabihf并将/ usr / local / arm-cortex_a7-linux-gnueabihf / bin添加到PATH 组件和版本 gcc 5.4.0,glibc 2.24,binutils 2.26,gdb 7.11.1(使用crosstool-ng构建) 提升1.63.0(带有HEAD的上下文和光纤) OpenCV 3.1.0 Raspicam( ) Qt 5 系统库(X11,OpenGL)来自FedBerry 24
2025-04-04 04:48:59 168.03MB
1
《Small RTOS v1.20.3:嵌入式实时操作系统详解》 Small RTOS v1.20.3是由陈明计编写的轻量级实时操作系统,它专为51系列微控制器设计,同时也具备高度可移植性,能够方便地应用于AVR和ARM架构的处理器。这一版本是该系统最后的重大更新,意味着它集成了之前的所有优化和改进,为开发者提供了稳定可靠的运行环境。 1. **51系列微控制器** 51系列是8位微控制器,广泛应用于各种嵌入式系统,尤其是入门级项目。Small RTOS针对51的特性进行了优化,确保在有限的资源下实现高效运行。这包括对中断处理、内存管理以及低功耗模式的支持。 2. **AVR与ARM架构** AVR和ARM是两种广泛应用的微处理器架构,AVR主要应用于8位和16位市场,而ARM则覆盖了从低端到高端的广泛范围。Small RTOS的可移植性使得开发者可以在这些平台上无缝迁移,降低了跨平台开发的复杂性。 3. **RTOS基础** 实时操作系统(RTOS)的核心在于调度算法,Small RTOS也不例外。它提供了抢占式调度,允许任务优先级的动态调整,确保关键任务的及时执行。此外,还包括信号量、邮箱、消息队列等同步机制,用于进程间通信和资源管理。 4. **内存管理** 对于资源有限的嵌入式系统,内存管理至关重要。Small RTOS通过内核实现了高效的内存分配和释放,避免内存泄漏,并支持动态内存分配,满足不同任务需求。 5. **中断服务程序** 在实时系统中,中断处理是性能的关键。Small RTOS提供了完善的中断处理机制,确保中断响应时间的确定性,同时保护了任务执行的连续性。 6. **例程与应用** 包含的"Small RTOS 下dp-51例子for v1.20.x.zip"提供了针对51系列的实例代码,帮助开发者快速理解和上手。此外,"small_rtos1.20.3.zip"则是系统的核心代码库,包含了完整的RTOS内核。 7. **移植性与兼容性** Small RTOS v1.20.3的可移植性体现在对LPC2104等特定硬件平台的支持。LPC2104是基于ARM7TDMI-S内核的微控制器,Small RTOS的移植证明了其在更复杂硬件上的适用性。 Small RTOS v1.20.3是针对嵌入式领域设计的一款强大且灵活的操作系统,不仅适用于51系列,还能扩展至AVR和ARM平台,为开发者提供了一个高效、可靠且易于移植的软件基础。通过深入学习和应用,开发者可以构建出满足各种需求的嵌入式系统。
2025-04-02 22:58:40 284KB Small RTOS v1.20.3.zip 51 AVR ARM 陈明计
1
随着2024年微软全球蓝屏事件的出现,系统安全越来越重要。目前很多企业开始尝试国产化操作系统上,本文介绍如何在国产化银河麒麟系统V10(arm)版上安装neo4j-community-3.5.26。 Neo4j是一款图数据库管理系统,采用图形结构存储数据,支持高效的图形查询和图形分析。它提供了直观易用的界面和高效的计算引擎,支持多种数据输入格式和结果输出格式,同时提供了可视化的结果展示界面。 本资源是arm版本的neo4j-community-3.65.2离线安装包,能够在arm版国产化银河麒麟系统上进行安装,并配置防火墙端口详细安装步骤见https://blog.csdn.net/rember0087/article/details/141298271,有任何安装问题可以私信或留言。
2025-04-02 09:38:43 140.73MB arm neo4j 图数据库
1
在本项目中,我们主要探讨的是如何利用STM32CubeIDE在STM32F4微控制器上通过DMA和PWM技术来驱动WS2812灯带。STM32F4系列是基于ARM Cortex-M4内核的高性能微控制器,常用于嵌入式硬件设计,而STM32CubeIDE是ST Microelectronics提供的集成开发环境,集成了代码生成、调试和配置等功能,使得开发过程更为便捷。 我们需要了解STM32F4的定时器(TIM)功能。在这个案例中,使用了TIM2,这是一个通用定时器,可以配置为PWM模式。PWM(脉宽调制)是一种常见的控制LED亮度或驱动其他设备的方法,通过改变脉冲宽度来调整输出电压的平均值。双缓冲机制则是在TIM2内部,允许我们在不中断PWM输出的情况下更新定时器的参数,提高了系统性能。 接下来,DMA(直接内存访问)在其中起到了关键作用。DMA允许数据在存储器和外设之间直接传输,无需CPU介入,从而减轻了CPU负担并提高了效率。在驱动WS2812灯带时,DMA可以用来连续发送数据流到TIM2,以控制LED的亮灭顺序和颜色。 WS2812是一款常见的RGB LED灯带,每个LED包含红、绿、蓝三种颜色,可以通过单线接口进行串行通信。这种串行通信协议要求严格的时间精度,因此需要STM32的定时器精确地生成特定的时序。WS2812的通信协议是基于定时器中断和DMA的结合,确保每个颜色数据的正确传输。 在STM32CubeIDE中,我们需要配置TIM2的参数,包括预分频器、自动重载值等,以便设置合适的PWM周期。同时,要开启TIM2的DMA请求,将数据从内存传输到定时器的捕获/比较寄存器。此外,还需要编写DMA配置代码,设置源地址、目标地址、传输长度以及传输完成的中断处理。 在驱动WS2812灯带时,我们需要预先计算好每个LED的颜色值,并将其按顺序排列在内存中。这些颜色值会被DMA读取并按照WS2812的协议序列化后输出。由于WS2812要求数据在极短的时间内连续发送,所以需要精确的时序控制,这正是STM32F4的定时器和DMA功能的优势所在。 总结来说,这个项目涉及了STM32F4的TIM2定时器配置、PWM输出、DMA数据传输和WS2812灯带的串行通信协议。通过理解这些知识点,我们可以实现用STM32CubeIDE在STM32F4微控制器上高效、精确地控制RGB LED灯带,创造出各种动态灯光效果。
2025-03-31 11:12:33 4.66MB stm32 arm 嵌入式硬件
1