这个程序是我已经运行出来的~希望对你的学习有帮助。
2021-11-28 14:55:08 43KB C++ 牛顿迭代法 非线性方程组
1
C++编写的牛顿迭代法。可以算出较精确的数值解。
2021-11-24 18:00:33 2KB 牛顿迭代法
1
通过C++编程实现了牛顿迭代法解非线性方程
2021-11-24 14:39:32 255KB 牛顿迭代 C++
1
牛顿迭代法C语言实现
2021-11-22 17:02:21 1.09MB c语言
1
应用数值分析中牛顿迭代法实现方程的求解,更好的理解该算法
2021-11-19 20:33:19 242B 牛顿迭代法 matlab
1
1. 目的: (1)通过采用牛顿迭代法、弦截法和二分法求根的程序设计,使学生更加系统地理解和掌握C语言函数间参数传递方法、数组和指针的应用等编程技巧。培养学生综合利用C语言进行科学计算,使学生将所学知识转化为分析和设计数学中的实际问题的能力,学会查资料和工具书。 (2)提高学生建立程序文档、归纳总结的能力。 (3)进一步巩固和灵活运用先修课程《计算机文化基础》有关文字处理、图表分析、数据归整、应用软件之间图表、数据共享等信息技术处理的综合能力。 2. 基本要求: (1)要求用模块化设计和C语言的思想来完成程序的设计; (2)要求分别编写牛顿迭代法、弦截法和二分法求根的函数,分别存到不同的.CPP文件中; (3)在VC++6.0环境中,学会调试程序的方法,及时查究错误,独立调试完成。 (4)程序调试通过后,完成程序文档的整理,加必要的注释。 一般解一元方程,常用采用的方法有:牛顿迭代法、弦截法和二分法等。 牛顿迭代法求根 〖〖f(x)=a〗_0 x〗^n 〖〖 + a〗_1 x〗^(n-1) +⋯+〖 a〗_(n-2) x^2 +〖 a〗_(n-1) x +〖 a〗_n=0 求f(x)在〖 x〗_0附近的根。 计算公式:〖 x〗_(n+1)=〖 x〗_n- f(〖 x〗_n )/(f(〖 x〗_n)) ́ 精度:ε=|〖 x〗_(n+1)-〖 x〗_n|<1.0e-m ,m=6。 牛顿迭代法 所求的根:满足精度的〖 x〗_n 二分法 任取两点〖 x〗_1和〖 x〗_2,判断(〖 x〗_1, 〖 x〗_2)有无实根。如下图所示,如果f(〖 x〗_1 )和f(〖 x〗_2 )符号相反,说明(〖 x〗_1, 〖 x〗_2)之间有一实根。取(〖 x〗_1, 〖 x〗_2)的中点x,检查f(x)和f(〖 x〗_1 )是否同符号,如果不同号,说明实根在(〖 x〗_1,x)区间,x作为新的〖 x〗_2,舍弃(x, 〖 x〗_2)区间;若同号,则实根在(x, 〖 x〗_2)区间,x作为新的〖 x〗_1, 舍弃(〖 x〗_1,x)区间。再根据新的〖 x〗_1 、 〖 x〗_2,找中点,重复上述步骤。直到|〖 x〗_1-〖 x〗_2|〖<10〗^(-6)时,x =(〖 x〗_1+〖 x〗_2)/2为所求。 (3)弦截法 取f(〖 x〗_1 )与f(〖 x〗_2 )连线与x轴的交点x,从(〖 x〗_1, x)和(x, 〖 x〗_2)两个区间中取舍的方法与二分法相同。 计算公式为: 判断f(〖 x〗_1 )与f(〖 x〗_2 )是否同符号的方法与二分法采用的方法相同。直到先后两次求出的x的值之差小于〖10〗^(-6)为止。 分别用牛顿迭代法、弦截法和二分法求下列方程的根,分析比较各种方法的迭代次数及精度。 〖f(x)=x〗^3 〖- 2x〗^2 +7x +4=0 牛顿迭代法的初值:x=0.5; 弦截法〖 x〗_1,〖 x〗_2的初值:-1,1 二分法〖 x〗_1,〖 x〗_2的初值:-1,0 精度要求:|〖 x〗_1-〖 x〗_2| 〖<10〗^(-6)
2021-11-18 20:47:16 35KB sa
1
牛顿迭代法求非线性方程组 牛顿迭代法求非线性方程组
2021-11-14 15:53:24 3KB 牛顿迭代法 非线性 方程组
1
空间直角坐标向大地坐标转换的新算法-牛顿迭代
1
牛顿-拉夫逊法潮流计算 一、 基本原理 设有单变量非线性方程 f ( x) 0 (11 29) 求解此方程时,先给出解的近似值 (0) x ,它与真解的误差为 (0) x ,则满足方程 (11-29),即 (0) (0) f ( x x ) 0 将上式左边的函数在 (0) x 附近展成泰勒级数,便得 (0) 2 (0) (0) (0) (0) (0) (0) (0) ( ) (0) ( ) ( ) ( ) ( ) ( ) 2! ( ) ( ) (11 30) ! n n x f x x f x f x x f x x f x n 式中, (0) ( ) (0) ( ), , ( ) n f x
2021-11-10 12:08:33 129KB matlab 牛顿迭代
1
其中包含国外关于机械臂关节反解的办法,通过牛顿迭代法进行关节反解,同时提供四轴机械臂的关节反解MATLAB的仿真代码
2021-11-07 16:54:18 401KB 机械臂 jacobian 牛顿迭代法 MATLAB
1