中尺度涡是海洋中一种特殊的中尺度现象,对人类活动和海洋科学有着重要意义.海洋物理中对中尺度涡的检测通常依赖由专家预定义或调整的参数,无法保证准确度;或者对全部海洋数据逐点扫描判断,耗时较长.此外,中尺度涡的时空统计数据繁杂,整理和分析工作量巨大且无法较好展示相关信息.本文提出了一种基于深度学习目标检测的海洋中尺度涡检测算法,可达到较高的识别精确率和查全率,避免了阈值选取对中尺度涡检测的影响,大大提高了检测速度;并设计中尺度涡时空特征及海洋信息协同可视化系统,对中尺度涡进行交互式展示和分析,满足对涡旋的统计信息、特征分布和属性关联进行洞察、说明和相关性分析的需求.
1