MSRN_PyTorch 该存储库是论文“用于图像超分辨率的多尺度残差网络”的官方PyTorch实施。 可以从下载论文 可以从下载所有测试数据集(预处理的HR图像)。 所有原始测试数据集(HR图像)都可以从下载。 我们的MSRN直接在Y通道上进行了培训和测试。 但是,越来越多的SR模型在RGB通道上进行训练。 为了公平起见,我们根据代码对MSRN进行了重新培训。 我们发布了该项目的新代码和结果。 旧代码被移到OLD /文件夹中。 新代码存储在MSRN /文件夹中。 更新2019.06.12.1 先前提供的再训练模型使用DIV2K(1-895)。 我们更正了此错误,并提供了重新训练的模型(DIV2K 1-800)和结果。 我们现在还提供了x8结果! 请注意,我们仅使用800张图像(DIV2K 1-800)进行训练,并使用最新的重量文件进行测试。 更新2019.06.12.2
2021-06-23 11:42:34 407.85MB super-resolution eccv eccv-2018 msrn
1
libtorch实现的Resnet34残差网络网络,对Cifar-10数据集进行训练和分类,测试集分类准确率达到94.05%
2021-06-20 09:07:13 15.1MB libtorch Resnet34 残差网络 深度学习
1
近年来, 随着人工智能的发展, 深度学习模型已在ECG数据分析(尤其是房颤的检测)中得到广泛应用. 本文提出了一种基于多头注意力机制的算法来实现房颤的分类, 并通过PhysioNet 2017年挑战赛的公开数据集对其进行训练和验证. 该算法首先采用深度残差网络提取心电信号的局部特征, 随后采用双向长短期记忆网络在此基础上提取全局特征, 最后传入多头注意力机制层对特征进行重点提取, 通过级联的方式将多个模块相连接并发挥各自模块的作用, 整体模型的性能有了很大的提升. 实验结果表明, 本文所提出的heads-8模型可以达到精度0.861, 召回率0.862, F1得分0.861和准确率0.860, 这优于目前针对心电信号的房颤分类的最新方法.
1
使用keras自定义残差网络,以MNIST数据集分类为例,为帮助读者了解残差网络的实现,仅使用简单的全连接层
2021-06-06 18:08:09 11.06MB 残差网络 ResNet MNIST
1
基于深度残差网络的人脸关键点检测
1
传统的花卉识别算法一般是建立在手动特征提取和分类器训练的基础上,其泛化能力有限且准确度存在瓶颈。为此提出了基于深度卷积网络的识别算法,采用152层残差网络架构,在爬虫获取的大量标定数据基础上,对神经网络进行迁移学习训练。上线发布的算法集成系统中,用户拍照获取的花卉照片可通过网络传输到云服务器,并在服务端部署的深度学习架构下实现花卉快速识别。针对ImageNet和网龙花卉数据集的实验对比结果表明,基于残差网络迁移学习的方法具有识别准确率高、实时反馈、鲁棒性好等特点。
2021-05-20 17:57:08 968KB 论文研究
1
基于keras的ResNet-50实现,可以结合文章https://blog.csdn.net/qq_34213260/article/details/106314320了解网络原理和实现
1
此程序是一个残差网络的程序,此文件中含有的功能可以让初学者用来学习和了解残差网络的基本原理和实现过程
2021-05-11 16:28:08 185KB 深度学习 resnet
1
残差网络50层模型,可用于图像分类,图像检索,训练数据来自ImageNet。从github上下载网速太慢,很难下载下来,我还是用公司服务器好不容易才下载下来的,亲测可用,发上来赚点资源积分自己用,请支持
2021-05-09 22:09:08 90.68MB resnet50 残差网络 ImageNet 图像检索
1
(1)小目标在图像中所占像素很少,经过多层卷积之后提取得到的特不明显,为了改善 YOLOv3 的小目标特征提取性能,通过将原网络模型中经 2 倍降采样的特征图进行卷积分别叠加到第二及第三个残差块的输入端,以此增强浅层特征信息。同时,在第一个 8 倍降采样的特征图后连接 RFB 模块,增强特征提取能力。 (2) 原网络中采用多次步长为 2 卷积操作代替池化层来进行特征图的下采样操作,降低了特征的传递能力。为此,本文借鉴 Dense Net 的思想,采用密集连接的方式将浅层特征图直接传输到深层同尺度卷积层的输入端。这样不仅能增强浅层特征重用能力,而且还可以有效缓解梯度消失问题。 (3) 提出了基于泛化 Io U 的回归损失函数代替原回归损失函数。通过在损失函数中加入锚框与真实框中心点距离相关以及预测框与真实框面积相关的两个惩罚项,使预测框的定位更加准确;并同时解决了两框无交集时的梯度消失的问题。本文基于以上三点改进分别在 PASVAL VOC 数据集和 VEDAI 数据集上与原网络进行对 比实验。训练过程中,在训练批次相同的条件下训练时长相当。实验结果表明,上述三点同时作用于原 YOLOv3 网络时,在小目标检测上具有更低的漏检率,定位更加准确,且检测速度相仿。