overfeat:Classification, Localization and Detection using Deep Learning ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) ICCV
2024-10-02 18:19:00 30.92MB overfeat ImageNet ilsvrc Detection
1
参考: CNN系列模型发展简述(附github代码——已全部跑通) – KevinCK的文章 – 知乎 https://zhuanlan.zhihu.com/p/66215918 演变 LeNet:2个卷积3个全连接,最早用于数字识别 AlexNet:12年ImageNet冠军,5个卷积3个全连接,多个小卷积代替单一大卷积;使用ReLU激活函数,解决梯度小数问题;引入dropout避免模型过拟合;最大池化。 ZF-Net:13年ImageNet冠军,只用了一块 GPU 的稠密连接结构;将AlexNet第一层卷积核由11变成7,步长由4变为2。 VGG-Nets:14年ImageNet分类第二名
2023-05-07 23:37:38 577KB cnn深度学习 imagenet 卷积
1
元转移学习,少量学习 该存储库包含针对论文的TensorFlow和PyTorch实现,作者孙倩*,*,( )和( (* =相等贡献)。 如果您对此存储库或相关文章有任何疑问,请随时或。 检查快照分类排行榜。 概括 介绍 入门 数据集 表现 引文 致谢 介绍 已经提出将元学习作为解决具有挑战性的一次性学习设置的框架。 关键思想是利用大量类似的少量任务,以学习如何使基础学习者适应新的任务,对于该新任务,只有少量标记的样本可用。 由于深度神经网络(DNN)仅仅使用少数几个样本就趋于过拟合,因此元学习通常使用浅层神经网络(SNN),因此限制了其有效性。 在本文中,我们提出了一种称为元转移学习(MTL)的新颖的少拍学习方法,该方法可以学习将深度神经网络适应于少拍学习任务。 具体来说,meta是指训练多个任务,并且通过学习每个任务的DNN权重的缩放和移位功能来实现传递。 我们在两个具有挑
1
卷积神经网络 Python tensorflow keras CNN VGG16 imagenet 预训练权重 人脸识别分类 训练集测试集评估准确率 maxpolling dropout jupyter notebook numpy pandas 数据分析 数据挖掘 深度学习 机器学习 人工智能
2023-04-11 20:51:39 47.9MB 深度学习 cnn 卷积神经网络 数据挖掘
1
元伪标签 安装套件 pip3 install SOTA-SSL 用法 import torch from SOTA_SSL_Models import SimSiam from torchvision import models model = SimSiam(args) 笔记 我发现直接使用SimCLR增强有时会导致模型崩溃。 这可能是由于SimCLR增强太强的事实。 在预热阶段采用MoCo增强会有所帮助。 数据集 data/ imagenet/ train/ ... n021015556/ .. n021015556_
2023-03-12 15:28:57 220KB docker latex imagenet pytorch-implementation
1
针对实际交通场景下的车辆目标,应用深度学习目标分类算法中具有代表性的Faster R-CNN框架,结合ImageNet中的车辆数据集,把场景中的目标检测问题转换为目标的二分类问题,进行车辆目标的检测识别。相比传统机器学习目标检测算法,基于深度学习的目标检测算法在检测准确度和执行效率上优势明显。通过本实验结果分析表明,该方法在识别精度以及速度上均取得了显著的提高。
1
MobileNetV3的PyTorch实现这是MobileNetV3架构的PyTorch实现,如论文Searching MobileNetV3中所述。 一些细节可能与原始论文有所不同,欢迎讨论MobileNetV3的PyTorch实现。这是论文Searching MobileNetV3中描述的MobileNetV3体系结构的PyTorch实现。 一些细节可能与原始论文有所不同,欢迎讨论并帮助我解决。 [NEW]小版本mobilenet-v3的预训练模型在线,准确性达到与纸张相同的水平。 [NEW]该文件于5月17日更新,因此我为此更新了代码,但仍然存在一些错误。 [NEW]我在全局AV之前删除了SE
2023-03-03 20:17:12 8KB Python Deep Learning
1
imagenet_classes.txt
2022-12-30 17:29:06 21KB AI
1
imagenet_labels.txt是imagenet 1001个类别的标签文件,每行对应1个类别。 load_labels.py可以读取imagenet_labels.txt, 得到一个存储各类别的python列表,可以用索引查看对应类别名称。例如,前20个类别的名称为 ['background', 'tench', 'goldfish', 'great white shark', 'tiger shark', 'hammerhead', 'electric ray', 'stingray', 'cock', 'hen', 'ostrich', 'brambling', 'goldfinch', 'house finch', 'junco', 'indigo bunting', 'robin', 'bulbul', 'jay', 'magpie']
2022-12-20 11:27:26 6KB 数据集标签文件
1
imagenet-deepfill模型
2022-12-06 17:26:30 13.75MB 深度学习
1