内容概要:本文介绍了人员睡岗玩手机检测数据集,该数据集包含3853张图片,采用Pascal VOC和YOLO两种格式进行标注,每张图片都有对应的xml文件(VOC格式)和txt文件(YOLO格式)。数据集共分为三个类别:“normal”、“play”、“sleep”,分别表示正常状态、玩手机和睡岗,对应的标注框数为2761、736和847,总计4344个框。所有图片和标注文件均使用labelImg工具完成,标注方式是对每个类别绘制矩形框。; 适合人群:计算机视觉领域研究人员、算法工程师及相关从业者。; 使用场景及目标:①用于训练和测试人员行为检测模型,特别是针对睡岗和玩手机行为的识别;②评估不同算法在该特定场景下的性能表现。; 其他说明:数据集仅提供准确合理的标注,不对基于此数据集训练出的模型或权重文件的精度做出保证。
2025-11-26 12:31:37 445KB YOLO 图像标注 数据集 目标检测
1
在计算机视觉和机器学习领域,数据集的构建对于模型训练至关重要。本篇文档详细介绍了名为“盲道损坏检测数据集”的资源,它采用VOC+YOLO格式,包含4195张标注图片,专注于一个特定的类别:“damaged”。该数据集不仅能够帮助研究者和开发者训练出能够识别盲道损坏的算法模型,还有可能进一步提高公共设施的安全性和无障碍环境的建设。 该数据集采用Pascal VOC格式,这是图像处理和目标检测领域中常用的标注方式。它通过xml文件来描述图片中的物体边界框、类别等信息,便于机器学习模型理解图片内容。同时,数据集还提供了YOLO格式的标注信息,YOLO(You Only Look Once)是一种流行的实时对象检测系统,其标注文件通常为文本格式,记录了目标物体的中心坐标和尺寸,这样的标注格式有助于训练YOLO模型。 文档中提到的图片数量和标注数量均为4195,说明每一幅图片都配有对应的标注信息,这表明数据集的标注工作已全面完成。标注类别仅有“damaged”这一个类别,可能反映了数据集针对特定问题的专注,即识别盲道上的损坏情况。总计8357个标注框,每个标注框对应图片中的一个或多个损坏部分,从这个数字可以看出数据集的详细程度和对损坏情况覆盖的全面性。 本数据集使用的标注工具是labelImg,这是一个广泛使用的图形界面工具,专门用于创建Pascal VOC格式的标注文件。使用该工具进行标注可以保证标注的准确性和效率,同时也保证了标注数据的一致性。标注规则简单明了,只需对损坏部分进行矩形框的绘制,便于标注人员快速上手并进行工作。 文档中未提及对数据集的使用说明或保证精度的声明,这可能意味着数据集的使用者需要自行验证数据集的质量和适用性,以及对生成模型的性能负责。而数据集的来源信息显示,它已经被上传至某下载平台,提供给更多的研究者和开发者下载使用,这表明数据集具有一定的开放性和共享性。 整体而言,这份数据集为研究和开发人员提供了一个宝贵的资源,特别是在无障碍环境的维护和公共安全方面具有现实意义。通过准确的标注,训练出来的模型将能更有效地识别盲道的损坏情况,这不仅有助于提升残疾人士的出行安全,还能推动社会对公共设施维护的重视,进而可能带动更多公共设施智能化的改进。
2025-11-26 11:04:06 958KB 数据集
1
太阳能光伏板积灰灰尘检测数据集是专门为研究和开发目标检测算法设计的,特别是在检测太阳能光伏板上积灰和灰尘的场景。该数据集采用了Pascal VOC格式和YOLO格式两种标注格式,不包含图片分割路径的txt文件,而是包括jpg格式的图片以及相应的VOC格式xml标注文件和YOLO格式的txt标注文件。VOC格式广泛应用于计算机视觉领域,用于图片标注,而YOLO格式则是针对一种名为YOLO(You Only Look Once)的目标检测算法的特定格式。 整个数据集包含1463张图片,每张图片都进行了详细的标注。标注的总数也达到了1463,与图片数量相同,保证了数据集的完备性。标注的对象包括单一的类别,即“Dirt”,也就是积灰和灰尘。在这些标注中,“Dirt”类别的标注框数总计为6822个,这反映了数据集在目标检测上的细致程度和多样性。每个“Dirt”类别的标注都以矩形框的形式呈现,这些矩形框精确地标出了图片中积灰和灰尘的位置和范围。 标注工具选用的是labelImg,这是一个常用于目标检测数据集制作的开源标注软件,支持生成VOC格式的xml文件。此外,本数据集在标注过程中遵循了一定的规则,即对每一块积灰或灰尘区域都进行矩形框标注。值得注意的是,数据集虽然提供了大量的标注信息,但编辑团队在说明中特别提到,数据集本身不保证任何由此训练出来的模型或权重文件的精度,这意味着数据集仅提供准确合理的标注图片,而模型的训练效果还需进一步的验证和调整。 图片重复度很高是这个数据集的一个特点,这在实际使用时需要用户特别注意。用户可能需要根据自己的需求进行图片的筛选或进一步的图像处理,以避免在训练数据集中出现过多重复图片,从而影响模型学习的有效性。数据集提供的图片示例和标注示例能够帮助用户理解标注的准确性和规范性,有助于模型开发人员进行算法的调试和优化。 由于本数据集旨在检测光伏板上的积灰和灰尘,对于光伏能源行业具有重要意义。准确地检测出这些因素能够及时对光伏板进行清洁维护,保障光伏系统的效率和能源产出。因此,这个数据集对于研究光伏板自动检测技术、提高光伏板运维效率以及减少人力成本等方面都有潜在的应用价值。
2025-11-24 21:27:37 3.64MB 数据集
1
本文将详细讲解“贵阳市道路、建筑、兴趣点矢量shp格式数据”这一主题,以及如何利用这些数据进行地理信息系统(GIS)分析。 我们要理解“shp”文件是什么。SHP(Shapefile)是Esri公司开发的一种常见地理空间数据格式,用于存储地理特征,如点、线和多边形。它包含了地理对象的位置和属性信息,常用于GIS应用。贵阳市的这个数据集包含了三种类型的空间信息:道路、建筑和兴趣点,这些都是城市规划、交通分析、商业选址等领域的重要数据。 道路数据通常包括道路的等级、类型、宽度、名称等属性,对于城市交通研究至关重要。通过分析道路网络,我们可以评估交通流量、设计优化路线、预测交通拥堵情况,甚至为智能交通系统提供基础数据。 建筑数据则包含了建筑物的位置、形状、高度、用途等信息,这对于城市规划、土地利用分析、环境影响评估等有极大的价值。例如,结合人口密度数据,可以研究居住区的分布;与商业活动数据结合,可分析商业区的发展潜力。 兴趣点数据通常指的是城市中的重要设施或吸引物,如学校、医院、公园、购物中心等。这些信息对于公众服务规划、人群流动研究、旅游规划等具有重要意义。通过对兴趣点的统计和分析,我们可以了解城市的活力和功能分区。 贵阳市的这些矢量数据采用wgs 84投影坐标系统,这是一种全球通用的地理坐标系,便于不同地区的数据交换和分析。使用GIS软件(如ArcGIS、QGIS等)可以轻松加载和处理这些数据,进行空间叠加、缓冲区分析、距离计算、聚类分析等操作。 相关性分析可以探索道路、建筑和兴趣点之间的关联,比如建筑密度与道路宽度的关系,或者兴趣点的分布与交通网络的紧密程度。空间分析则能揭示空间模式和趋势,如热力图、核密度分析等,帮助我们更好地理解城市空间结构。 这份“贵阳市道路、建筑、兴趣点矢量shp格式数据”是进行城市研究、规划决策的宝贵资源。通过深入挖掘和分析,我们可以获得对贵阳市城市发展的深入洞察,推动更科学的城市规划和管理。
2025-11-24 10:39:32 19.39MB
1
样本图参考:blog.csdn.net/2403_88102872/article/details/143389435 重要说明:文件太大放服务器了,请先到资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2792 标注数量(xml文件个数):2792 标注数量(txt文件个数):2792 标注类别数:3 标注类别名称:["decaycavity","earlydecay","healthytooth"] 三种主要类别,分别是“decaycavity”(龋齿)、“earlydecay”(早期龋齿)和“healthytooth”(健康牙齿)
2025-11-24 10:30:38 407B 数据集
1
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a “湖南长沙电子地图shp格式”是关于湖南省长沙市地理信息的GIS数据集。SHP格式是Esri公司开发的Shapefile格式,是GIS领域常用矢量数据格式,可存储点、线、面等几何对象及属性数据。该数据集从淘宝购买,是商业产品,涵盖长沙市行政边界、道路网络、建筑物分布、公共设施等地理要素,可用于城市规划、环境分析、交通管理等领域,方便研究者、开发者及普通用户使用。其标签“地图”“arcmap”“长沙”“gis”表明文件用途及处理工具,ArcMap是Esri公司ArcGIS软件套件组件,用于查看、编辑和分析GIS数据,该shp文件可导入其中进行可视化和地理分析。压缩包中文件名为“2012年湖南长沙电子地图shp格式”,数据采集于2012年,虽不包含2012年后城市发展变化,但对研究当年长沙地理特征和历史变迁仍具价值。用户可利用该地图数据进行地图可视化,通过ArcMap等GIS软件展示长沙地理布局;开展数据分析,如计算最短路径、分析人口密度或交通流量等;辅助城市规划师进行城市规划决策;供教育机构用于地理教学和科研项目。这份文件是GIS领域宝贵资源,借助ArcMap等专业工具,可深入分析和应用,满足多种实际需求。
2025-11-24 10:04:55 282B 湖南长沙
1
说明:SolidWorks2025-SDK-API文档 格式:HTML 包含:sldworksapi、swcommands、swconst dll 的示例代码与接口方法文档
2025-11-24 09:18:22 64.85MB
1
在深度学习和计算机视觉领域中,数据集的构建是实现高效准确目标检测算法的基础。智慧城市作为当前城市发展的重要方向,交通违规行为的自动检测技术可以极大提升城市管理的效率和安全水平。数据集“智慧城市-交通违规行为检测数据集VOC+YOLO格式4662张7类别.zip”为该技术研究提供了宝贵的资源。 该数据集包含4662张图片,这些图片覆盖了多种交通违规行为,每张图片都对应着一个或多个特定的标签。数据集采用VOC(Visual Object Classes)和YOLO(You Only Look Once)两种格式,旨在方便研究人员使用不同框架进行目标检测实验。VOC格式是一种较为通用的标注格式,包含了目标的位置框(bounding box)信息和类别信息,而YOLO格式则是专为YOLO系列目标检测算法优化的标注格式,它将图像划分为一个个格子,每个格子负责检测目标所在的区域。 7个类别涵盖了常见的交通违规行为,比如不遵守交通信号、非法停车、逆行、不使用安全带、打电话、超载以及交通事故现场。每张图片中的违规行为都经过了精确标注,这样的细节对于训练和测试目标检测模型至关重要,因为它直接关系到模型在实际应用中的表现。准确的标注可以减少模型学习过程中的噪声,提高模型的泛化能力。 数据集的构建者可能采用了人工标注的方式,确保了标注的准确性。人工标注是目前最可靠的方式,尤其适合于复杂场景和多目标的情况。在实际操作中,标注者需要根据交通规则和实际情况,精确地标出违规行为的位置,并给出相应的类别标签。这个过程不仅耗时,而且需要具备一定的专业知识。 此外,数据集的规模也是一个重要考量因素。4662张图片对于训练一个健壮的目标检测模型而言是一个相对合理的数据量。更多的数据意味着模型能见到更多的场景变化,从而学习到更加鲁棒的特征。同时,数据集包含7个类别,这既是对模型分类能力的考验,也是对实际应用中违规行为多样性的反映。 在实际应用中,该数据集可以帮助开发出可以自动识别和记录交通违规行为的系统。例如,交通监控摄像头可以使用这种技术来自动检测并记录违规车辆,然后将相关信息发送给交通管理部门,从而提高交通违规处理的效率。 未来,随着智慧城市的发展,对于这类技术的需求会不断增长。因此,数据集的更新和扩充也显得尤为重要。随着更多新型违规行为的出现,数据集也需要不断加入新的类别和更多样化的场景图片,以保持其先进性和实用性。 数据集“智慧城市-交通违规行为检测数据集VOC+YOLO格式4662张7类别.zip”提供了一个高质量的图像和标注资源,对于推动交通违规行为检测技术的发展具有重要意义。通过对该数据集的深入研究和应用,可以有效提升交通管理的智能化水平,为建设更加安全和有序的智慧城市提供技术支持。
2025-11-23 15:38:23 451B
1
CardiacUS-Septum 是一个专注于心脏超声图像中室间隔(Interventricular Septum)分割的公开数据集,包含 3,092张 高质量心脏超声切面图像及对应的LabelMe格式标注文件。本数据集旨在促进医学图像分割算法的研究,特别是心脏结构的自动识别与分析。 关键特性 数据量:3,092张心脏超声图像(.jpg格式) 标注格式:标准LabelMe JSON格式(兼容主流分割工具) 标注类别:单类别(室间隔,标签名:IVS) 图像来源:多中心采集(已脱敏处理,去除患者隐私信息) 适用场景:医学图像分割、超声影像分析、AI辅助诊断
2025-11-20 14:51:53 48.73MB 数据集
1
花卉病害检测数据集具有显著的实用价值,能够帮助相关领域的研究者和开发者进行精确的模型训练和验证。该数据集包含了2163张图像,这些图像均以Pascal VOC格式和YOLO格式进行标注,但不包含分割路径的txt文件,仅包含jpg图片、对应的VOC格式xml文件和YOLO格式txt文件。这种双格式的标注方式,为不同的目标检测框架提供了便利,Pascal VOC格式广泛应用于计算机视觉领域,而YOLO格式则因其速度和准确性被许多实时检测系统所采纳。 数据集中的图片数量和标注数量均为2163,表明每张图片都有相应的标注文件。数据集包含了8种不同的花卉病害类别,分别为黑斑(Black-Spot)、叶斑病(Cercospora-Leaf-Spot)、霜霉病(Downy-Mildew)、鲜叶(Fresh-Leaf)、粉霉病(Powdery-Mildew)、玫瑰(Rose)、灰霉病(Rose-Botrytis-Blight)和蜗牛(Rose-Slug)。对这些类别进行精确区分,并对各自类别进行了矩形框标注,有助于机器学习模型识别和分类不同的病害。 具体到每种类别的病害,标注的框数分别为:黑斑1204个框,叶斑病2023个框,霜霉病445个框,鲜叶347个框,粉霉病1043个框,玫瑰223个框,灰霉病216个框,蜗牛1755个框。这些数字反映了数据集中各类病害出现的频率,对于训练数据集时进行类别权重调整有着重要的意义。总框数为7256,这些框数的积累为深度学习模型提供了丰富多样的训练样例。 本数据集使用了标注工具labelImg进行标注工作,这款工具广泛应用于目标检测任务中,它能够生成标准的XML格式标注文件。通过矩形框的方式对目标进行标注,简单直观且易于被计算机视觉模型理解。另外,数据集特别指出了标注规则,并强调了类别名称与YOLO格式类别顺序不完全对应,后者需以labels文件夹中的classes.txt文件为准。 数据集中的每个标注类别都有着相应数量的框数,这有助于模型在训练过程中对病害的识别和分类。其中,尤其需要注意的是Rose-Slug类别,其框数最多,达到1755个,这可能意味着在数据集中蜗牛造成的破坏较为常见,因此在设计模型时应对此予以重视。 重要说明部分提到了数据集不包含任何关于训练模型或权重文件精度的保证,这意味着使用此数据集训练出的模型性能可能会因多种因素而有所不同。数据集的提供者还强调,数据集提供的标注图片是准确且合理的,但模型精度仍需用户自己验证。 在机器学习尤其是深度学习领域,数据集是模型训练的基础。一个质量高、标注准确的数据集对于模型的训练至关重要。花卉病害检测数据集VOC+YOLO格式2163张8类别数据集以其精准的标注、丰富的类别和大量的样本,无疑为花卉病害的自动检测和识别提供了强有力的支持,有助于相关领域的科研和应用进步。研究者和开发者可以利用该数据集进行模型训练和测试,为花卉种植业的病害监控和防治提供自动化和智能化的技术支持。
2025-11-20 10:11:19 2.43MB 数据集
1