1.python代码 2.有数据集,可直接运行
2022-04-28 21:06:01 4KB python 算法 支持向量机 机器学习
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:SVM参数优化_提升分类器的性能_GA_PSO_matlab 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-13 09:12:07 15KB matlab 支持向量机 SVM GA_PSO
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类。因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm。 一、导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html。 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素
2022-04-10 20:33:59 175KB matlab函数 python python算法
1
C语言版的支持向量机源码,很好,很强大。
2022-04-07 11:14:12 4KB C,SVM
1
内包含基于SVM的粒子群算法来处理乳腺癌的分类预测,其中首先用到了特征提取方法进行特征提取,然后再进行了分类预测。 本程序调用libsvm,使用该代码时,首先需要配置libsvm函数包。
2022-04-06 03:10:12 41KB 支持向量机 算法 分类 机器学习
5.1 支持向量机(SVM)算法(上)
2022-04-06 03:09:58 12KB 支持向量机 算法 机器学习 人工智能
svm-gpu 适用于带GPU的多类支持向量机(SVM)库。 这是一种快速且可靠的分类算法,在有限的数据量下性能很好。 支持向量机 : 支持向量机是有监督的学习模型,可以分析数据并识别模式。 一个特殊的特性是,它们同时最小化了经验分类误差并最大化了几何余量。 因此,它们也被称为最大余量分类器。 支持向量机的优点是: 在高维空间有效。 在维数大于样本数的情况下仍然有效。 在决策函数中使用训练点的子集(称为支持向量),因此它也可以提高存储效率。 多功能:可以为决策功能指定不同的内核功能。 提供了通用内核,但是也可以指定自定义内核。 与神经网络相比,在有限数量的样本(数千个样本)中实现了更高的速度和更好的性能 支持向量机的缺点包括: 如果特征数量远大于样本数量,则在选择内核函数时应避免过度拟合,并且正则化项至关重要。 SVM不直接提供概率估计,而是使用昂贵的五重交叉验证来计
2022-03-29 11:08:04 113KB JupyterNotebook
1
自己制作的支持向量机PPT,用于日常学习分享,欢迎大家下载交流,配套的文章在本人的博客上。适合课题分享、小组交流、科普机器学习。
2022-03-23 16:32:24 994KB 机器学习 ppt 支持向量机 分类器
1
支持向量机(SVM)是一种分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,学习策略是间隔最大化,最终可转化为一个凸二次规划问题的求解。包含三个由简至繁的模型:线性可分支持向量机、线性支持向量机、非线性支持向量机。学习支持向量机一个比较高效的方法是序列最小最优算法。
2022-03-21 11:33:24 2.91MB svm 支持向量机 ppt
1
此代码将找出二维数据集的决策边界。 文件包含多个支持函数,主程序是 DecisionBoundary_SVMs.m 示例集包含线性和非线性数据集,使用带有 RGF 核的 SVM,我们将找出数据集的决策边界。
2022-03-15 16:25:14 23KB matlab
1