对收集到测井数据进行去除异常值、插值、标准化、独热编码等数据预处理,分别得到预测储层物性的回归数据及识别储层含油气性的分类数据。
为了预测储层物性孔隙度,本文构建了SVM支持向量机回归模型,并对该网络的BoxConstraint和KernelScale等关键指标进行超参数调整。基于上述模型,采用留一法交叉验证将单个井作为测试集,其余不包含该井的测井数据作为训练集,以此来分析单个井的孔隙度预测结果。
对影响因素数据(除去取值深度)进行主成分分析(PCA),将第一主成分和第二主成分作为SVM支持向量机模型的输入向量序列,以六类流体性质(含油水层、差油层、干层、水层、油层及油水同层)作为标签形成输出向量序列。由于典型的SVM支持向量机只能处理二分类问题,因此本文分别构建了六个SVM分类器。并且利用混淆矩阵、ROC曲线及AUC面积来衡量以上分类模型的性能。
适用方向:统计学及机器学习算法(SVM)的实例应用
关键词:SVM支持向量机;留一法交叉验证;主成分分析;matlab
1