支持向量机(SVM)不仅可以用于分类问题,还可以用于回归问题。在 SVM 回归中,模型的目标是尽量拟合给定的数据集,同时保持尽可能多的数据点落在间隔(epsilon-tube)内。
2024-03-26 21:38:18 224KB matlab 支持向量机 机器学习 数学建模
1
灰狼算法(GWO)优化极限学习机ELM回归预测,GWO-ELM回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-12 14:51:49 42KB
1
基于深度置信网络(DBN)回归预测,深度置信网络DBN回归预测,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 20:52:13 41KB 网络 网络 matlab
1
基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1
2022建模国赛代码(三天坚持不易) 包括K-meas算法、bp预测、回归预测,(python和matlab做的).zip
2024-03-01 22:33:45 3.98MB matlab python
1
我们在量子场论的背景下探索机器学习技术的观点。 特别是,我们讨论了在非零温度和化学势下的二维复标量场理论-一种具有非平凡相图的理论。 根据现场配置,成功地训练了神经网络,以识别该系统的不同阶段并预测各种可观察物的值。 我们分析了广泛的化学势,发现该网络很健壮,能够识别远离训练点的模式。 除了属于监督学习的回归分析之外,还提出了一种无监督的生成网络,以生成遵循特定分布的新量子场配置。 我们的生成模型自动捕获了物理配置满足的隐式局部约束。 我们详细介绍了这种生成方法在训练区域之外进行采样的潜在用途。
2024-02-28 20:34:06 1013KB Open Access
1
以矿井瓦斯涌出量的预测为主要研究目的,讨论了GM(1,1)方法适用于单一指数增长模型、对预测序列数据异常情况难以准确预测的局限性,依据灰色灾变预测原理,利用线性回归适用短期预测的特点,提出了基于GM(1,1)与线性回归组合预测矿井瓦斯涌出量的新方法.应用结果表明:该方法能很好地解决历史数据的跳变问题,使预测结果更为可靠、精确.
2024-02-28 16:03:16 1.07MB GM(1 1)模型 线性回归 瓦斯涌出量
1
为了对矿井深部瓦斯涌出量进行预测,介绍了灰色线性回归组合模型的建模方法,以某煤矿相对瓦斯涌出量统计数据为实例,利用灰色线性回归组合模型对其瓦斯涌出量进行预测,通过检验得出模型的精度等级为一级。结果表明:灰色线性回归组合模型可以使传统的灰色GM(1,1)模型不含线性因素的情形得到改善,在预测矿井深部瓦斯涌出量中取得了良好的预测效果,具有一定的实用价值。
1
粒子群算法PSO优化LSSVM最小二乘支持向量机惩罚参数c和核函数参数g,用于回归预测,有例子,易上手,简单粗暴,直接替换数据即可。 仅适应于windows系统。 质量保证,完美运行。 本人在读博士研究生,已发表多篇sci,非网络上的学习代码,不存在可比性。
2024-02-27 16:15:26 599KB 支持向量机
1