贝叶斯与决策树算法在入侵检测中的应用
2022-12-08 13:08:56 2.52MB 贝叶斯 决策树
1
贷款违约数据集含有 年龄、教育、工龄、地址、收入、负债率、信用卡负债、其他负债以及违约情况的字段。通过各特征来判断用户的违约情况。用到的技术模型如下 逻辑回归 面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 k近邻法(k-nearest neighbor,k-NN) 一种基本的分类和回归方法,是监督学习方法里的一种常用方法。k近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例类别,通过多数表决等方式进行预测。 决策树 一种基于树结构来进行决策的分类算法,我们希望从给定的训练数据集学得一个模型(即决策树),用该模型对新样本分类。决策树可以非常直观展现分类的过程和结果,一旦模型构建成功,对新样本的分类效率也相当高。 SVM(Support Vector Machine) 中文名为支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。 模型评估 可以根据混淆矩阵。得到其Accuracy准确率以及F1 score
2022-12-06 15:52:04 8KB scikit-learn 机器学习 分类模型 Python
1
id3 matlab代码多决策树算法 这是教决策树算法的演示 用于简单决策树算法,ID3和C4.5的Matlab代码 用于测试上述代码的示例数据集
2022-12-05 21:59:04 3.84MB 系统开源
1
决策树与随机森林MATLAB代码,可运行,内含EXCEL数据。
2022-12-04 14:28:02 51KB 决策树 随机森林 MATLAB EXCEL数据
1
基于四种决策树实现预测大气污染日的概率模型项目源码+数据+超详细注释 任务:根据环境数据,预测当天是不是大气污染日 内容包含: 1.本程序使用了四种模型进行预测,并对四种模型预测效果进行评估测试,分别是: 袋装决策树(BaggingClassifier) 额外决策树(ExtraTreesClassifier) 随机梯度提升(GradientBoostingClassifier) 随机森林(RandomForestClassifier) 2.本程序通过对例4中的梯度提升模型调整参数,来提高预测的准确率。分别调整了深度,学习率,采样集,和树数,通过brier skill score值来评价结果
针对传统分类方法在处理空间特征分布极为复杂的数据时效果不佳的缺点,结合分层思想的树分类技术,对广泛用于数据挖掘模型中的CART决策树算法进行改进,提出了一种基于人机交互的决策树算法,将其应用到遥感图像自动分类中,具有很好的弹性和鲁棒性,且分类结构简单明了,达到了更好的分类效果。以VC 6.0作为开发工具,定义了一种特殊的数据结构,实现了该分类系统。实践表明,该系统具有很好的稳定性和交互性,实用性较强。
2022-12-02 09:06:49 1004KB 决策树 算法 图像分类 遥感 VC
1
基于挖掘分析影响学生学习效果主因素为目的,采用了能够对数据进行挖掘分析并直观展示结果的决策树技术方法,通过某班学生某门课程的学习信息数据进行挖掘分析的试验,采用ID3和C4.5算法生成决策树,并使用后剪枝技术精简决策树,最终找出决定本门课程学习效果的主要因素-考勤。从而为分析学生学习情况,给予个性化提示与指导提供有效的建议。
1
决策树莺尾花
2022-11-29 14:32:20 257KB python
1
Graphviz is open source graph visualization software. 在Python中使用Graphviz,不仅需要安装相关的Python包,还需要安装Graphviz程序。该资源即为Graphviz安装程序(不是graphviz的Python包) 注:记住安装路径!!!
2022-11-28 17:03:41 31.89MB graphviz 决策树 机器学习 python
1
Decision_Tree_ID3:使用ID3算法从训练数据集(CSV文件)创建决策树。
2022-11-28 16:27:34 8KB Java
1