本资源属于代码类,是一些nlp工具的使用 nlp 工具 word2vec nltk textblob crf++ (1)机器人 (2)中文翻译,及繁体转简体 (3)关键词提取,主题提取,摘要提取 (4)命名体识别 (5)分词 (6)情感分析,正负类分析 (7)近义词,同义词,句子相似性 (8)聚类,监督,无监督 (9)词性标注 (10)词向量提取
2022-11-05 14:56:59 1.49MB nlp 机器学习
1
Linux Basics for Hackers(中文翻译稿),学习Linux安全技术必备
2022-10-31 13:00:12 9.37MB
1
DDR4协议前九章内容中文翻译
2022-10-12 21:47:22 15.48MB DDR
1
上传本书希望读者能够对移动机器人有一个比较清晰的认识,适合初学者了解该 领域
2022-10-12 17:13:13 45.05MB 移动机器人
1
STM32固件库使用手册的中文翻译
2022-09-29 16:49:47 2.79MB STM32固件库使用手册
1
中文翻译Introduction to Linear Algebra, 5th Edition 6.2节
2022-09-28 12:37:23 284KB 线性代数 机器学习数学
1
pg021_axi_dma_PG021_中文翻译.pdf
2022-09-21 16:02:14 2.48MB zynq xilinx dma 官方文档
1
中文翻译Introduction to Linear Algebra, 5th Edition 2.5节 1 若方阵 A 有逆,则既有 A−1A = I 又有 AA−1 = I。 2 检验可逆性的算法是消元法:A 必须有 n 个(非零)主元。 3 可逆性的代数检验是 A 的行列式:det A 必须非零。 4 可逆性的方程检验为 Ax = 0:x = 0 必须是唯一解。 5 若 A 和 B 都可逆,则 AB 也可逆: (AB)−1 = B−1A−1。 6 AA−1 = I 是关于 A−1 的 n 个列的 n 个方程。高斯—若尔当将 [A I] 消元为 [I A−1]。 7 本书最后一页提供了方阵 A 可逆的 14 个等价条件。 假设 A 是个方阵。我们寻找一个相同大小的“逆矩阵”A−1,使得 A−1 乘以 A 等于 I。无论 A 做 什么,A−1 总是反着来。它们的积是单位矩阵——即对向量什么都不做,因此 A−1Ax = x。然而 A−1 可能不存在。 一个矩阵的主要作用是与一个向量 x 相乘。将 Ax = b 乘上 A−1 得出 A−1Ax = A−1b。这就是 x = A−1b。乘
2022-09-19 09:09:10 194KB 线性代数 数学
1
并行计算的一本介绍书籍,涉及当前计算机并行计算系统的介绍与讲解
2022-09-13 15:26:14 12.38MB 并行计算
1
中文翻译Introduction to Linear Algebra, 5th Edition 2.4节 我将从基本事实开始。矩阵是一个数字或“元素”的矩形数组。当 A 是 m 行 n 列时,它是一个“m×n” 矩阵。若矩阵形状相同,则它们可以相加。它们可以乘上任意常数 c。以下是关于 3 × 2 矩阵的 A + B 与 2A 的例子:  1 2 3 4 0 0  +  2 2 4 4 9 9  与 2  1 2 3 4 0 0  =  2 4 6 8 0 0 。 矩阵加法完全就像向量加法一样——每次算一个元素。我们甚至可将列向量视为一个仅有一列的矩阵 (如此 n = 1)。矩阵 −A 来源于乘以 c = −1(反转所有符号)。A 加上 −A 得零矩阵,此时所有元素为 0。所有这些都只是常识。 行 i、列 j 的元素被称为 aij 或 A(i, j)。沿第一行的 n 个元素为 a11, a12, . . . , a1n。矩阵的左下角 元素是 am1 且右下角元素是 amn。行号 i 从 1 到 m。列号从 j 从 1 到
2022-09-06 17:05:18 682KB 线性代数 数学
1