上传者: sinat_21706867
|
上传时间: 2022-09-19 09:09:10
|
文件大小: 194KB
|
文件类型: PDF
中文翻译Introduction to Linear Algebra, 5th Edition 2.5节
1 若方阵 A 有逆,则既有 A−1A = I 又有 AA−1 = I。 2 检验可逆性的算法是消元法:A 必须有 n 个(非零)主元。
3 可逆性的代数检验是 A 的行列式:det A 必须非零。
4 可逆性的方程检验为 Ax = 0:x = 0 必须是唯一解。 5 若 A 和 B 都可逆,则 AB 也可逆: (AB)−1 = B−1A−1。 6 AA−1 = I 是关于 A−1 的 n 个列的 n 个方程。高斯—若尔当将 [A I] 消元为 [I A−1]。 7 本书最后一页提供了方阵 A 可逆的 14 个等价条件。
假设 A 是个方阵。我们寻找一个相同大小的“逆矩阵”A−1,使得 A−1 乘以 A 等于 I。无论 A 做
什么,A−1 总是反着来。它们的积是单位矩阵——即对向量什么都不做,因此 A−1Ax = x。然而 A−1
可能不存在。
一个矩阵的主要作用是与一个向量 x 相乘。将 Ax = b 乘上 A−1 得出 A−1Ax = A−1b。这就是
x = A−1b。乘