1、使用Anaconda创建虚拟环境,2、建立VOC格式标准文件夹,3、将xml格式转换成yolo格式,4、修改yaml配置文件,5、权重文件下载,6、参数修改,再点开train.py,找到if __name__ == '__main__':开始修改参数7、使用训练好的权重文件进行识别,8、使用USB摄像头进行识别
2023-05-09 21:51:53 23.68MB 软件/插件 头盔佩戴检测识别
1
Python手势识别与追踪 内容概要: 源码包里面包括了摄像头手势识别与追踪.py, 视频手势识别与追踪.py 两个算法文件,65行代码,简单易懂,亲测成功。
2023-05-08 22:47:21 48.03MB python opencv 识别
1
这是一个实现简单,准确率较高的方法。 一、本方法基于颜色特征实现车牌定位。 在HSI空间实现蓝色查找,思路来自博客园 silenceer 的博客《车牌识别LPR(五)-- 一种车牌定位法》[1]。 通过对疑似区域求外接矩形判断车牌区域,思路来自博客园 计算机的潜意识 的博客 《EasyPR--开发详解(4)》[2]。 二、通过垂直投影和连通域分析实现字符分割。 三、通过3层神经网络实现字符识别。 参考 Andrew Ng 在 coursera 上的机器学习课程[3]。
2023-05-08 20:46:36 5.53MB matlab 机器学习
1
用pycharm实现的车牌识别系统,可视化用的pyqt5,图像处理用的opencv+pillow,用svm训练模型,文档为全部代码,实现功能是:1.上传本地图片进行识别 2.打开摄像头进行识别
2023-05-08 20:43:03 7.47MB 车牌识别全部代码
1
支持向量机是统计学习方法,正成为当今研究的热点,支持向量机在模式识别和文本分类等方面获得了极大的成功,分类的准确率很高,用支持向量机的方法处理一些二值图像和灰度图像,能获得较好的统计结果,从中摸索出了一种特征向量集的选取方法,讨论了判断结果优劣的标准,比较了支持向量机方法与其他方法得到的结果,得出了重要结论:用支持向量机识别图像的边缘具有非常优异的统计性能。
2023-05-08 19:36:45 56KB 自然科学 论文
1
对于指纹的特征提取包含几个步骤,脊线增强、脊线分割、脊线细化、细节点检测和细节点验证,本次大作业需要针对已经增强的指纹图片进行后续几个步骤,通过多种形态学算法进行分割、细化、细化后处理,找到其中的端点和分叉点,而指纹周边的伪细节点需要被去除。
2023-05-08 10:26:28 1.76MB matlab 图像处理 指纹识别
1
EEG-Emotion-classification-master_merelyts3_said63o_songc4x_DEAP情绪识别_DEAP数据集下载_源码.rar
2023-05-08 09:47:17 3.85MB
毕业设计基于Opencv的车牌识别系统 算法思想来自于网上资源,先使用图像边缘和车牌颜色定位车牌,再识别字符。车牌定位在predict方法中,为说明清楚,完成代码和测试后,加了很多注释,请参看源码。车牌字符识别也在predict方法中,请参看源码中的注释,需要说明的是,车牌字符识别使用的算法是opencv的SVM, opencv的SVM使用代码来自于opencv附带的sample,StatModel类和SVM类都是sample中的代码。SVM训练使用的训练样本来自于github上的EasyPR的c++版本。由于训练样本有限,你测试时会发现,车牌字符识别,可能存在误差,尤其是第一个中文字符出现的误差概率较大。 - 版本:python3.7.3,opencv4.0.0.21,numpy1.16.2,tkinter和PIL5.4.1.
2023-05-06 21:52:54 28.83MB opencv 毕业设计 车辆识别 Python
1
代码附数据集加载方式,文档包括案例完整流程:DNN/CNN结构设计、模型参数保存、断点续训、acc/loss可视化过程,最好一次epoch的模型参数保存。
2023-05-05 21:28:04 3.68MB 机器学习 手写数字识别 模式识别
1
基于Altera FPGA开发板实现了搭载有软核的车牌实时识别系统。 全国大学生集成电路创新创业大赛。 ARM 片上系统设计挑战赛。 本系统通过 Verilog 在硬件平台实现车牌识别算法。测试识别正确率均在 95%以上,且平均正确率为 98.5%。
2023-05-04 20:00:40 52.75MB FPGA ARM 车牌识别 数字识别
1