内容概要:本文详细探讨了基于时间到碰撞(TTC)和驾驶员安全距离模型的自动紧急制动(AEB)算法在Carsim与Simulink联合仿真环境下的实现方法和技术要点。文中介绍了AEB算法的核心模块,包括CCR M、CCRS、CCRB模型,以及二级制动策略和逆制动器模型的设计思路。同时,还讨论了控制模糊PID模型的应用及其参数调整方法。此外,文章强调了联合仿真过程中Carsim和Simulink各自的角色分工,即Carsim负责车辆动力学模拟,Simulink承担控制系统建模任务,两者协同工作以完成对AEB系统的闭环仿真。为了验证AEB算法的有效性,作者依据CNCAP和ENCAP法规设置了多种测试场景,并针对可能出现的问题提出了具体的解决方案。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注AEB系统设计与仿真的工程师。 使用场景及目标:适用于希望深入了解AEB算法原理并掌握其在联合仿真环境下实现流程的研究人员。主要目标是在满足相关法规要求的前提下,提高AEB系统的稳定性和可靠性。 其他说明:文中提供了大量实用的技术细节和代码片段,有助于读者更好地理解和应用所介绍的方法。
2025-04-06 09:46:03 126KB
1
单相全桥逆变器是一种常见的电力电子转换装置,它能将直流电源转换为交流电,广泛应用于太阳能发电系统、UPS电源以及电机驱动等领域。在本项目中,我们重点探讨的是基于Simulink的单相全桥逆变器的dq轴解耦控制仿真。 了解dq轴解耦控制的概念。在交流电机控制中,dq坐标系是一种常用的数学工具,它将定子电流分解为d轴(直轴,与磁场同步)和q轴(交轴,与转矩直接相关)两个分量。通过控制这两个分量,可以独立地调节电机的磁通和转矩,实现精确的动态性能。在逆变器中, dq轴解耦控制允许我们独立控制交流输出的电压和电流,从而优化系统的效率和稳定性。 对于这个特定的仿真模型,直流侧输入电压设定为36V,这是逆变器工作前的初始条件。逆变器的主要任务是将这个稳定的直流电压转换为交流电。为了实现这一转换,全桥逆变器通常由四个开关器件(如IGBT或MOSFET)组成,它们通过不同组合的导通和关断状态来改变电流的流向,形成正弦交流输出。 在这个仿真中,逆变器的输出设定为交流电压有效值24V,这意味着经过逆变器转换后的交流电压峰值将达到34.65V(有效值与峰值之间的关系是根号2倍)。同时,输出电流设定为2A,这代表了逆变器在满载运行时的负载能力。 Simulink是MATLAB的一个强大模块,常用于构建、模拟和分析复杂的动态系统。在设计dq轴解耦控制器时,我们可以利用Simulink的库函数创建逆变器模型,包括电压源、开关模型、滤波器以及dq变换模块。然后,我们需要设计一个控制器来调整d轴和q轴的电流参考值,以达到期望的电压和电流输出。这通常涉及到比例积分微分(PID)控制器或者滑模控制策略。 仿真过程中,我们会观察关键变量的变化,如输出电压波形、电流波形以及开关器件的状态。通过调整控制器参数,我们可以优化系统的响应速度、纹波大小以及动态性能。此外,还要考虑实际应用中的限制,如开关损耗、电磁兼容性和热管理。 总结来说,"单相全桥逆变器dq轴解耦控制simulink仿真"是一个综合性的课题,涵盖了电力电子、控制系统理论以及计算机仿真等多个方面。通过深入研究和仿真,我们可以更好地理解和优化这种逆变器的性能,为实际应用提供有价值的参考。文件"single_inverse_dq解耦控制"很可能是包含了所有这些组件和控制算法的Simulink模型,可供进一步分析和调试。
2025-04-04 17:38:01 47KB 单相全桥逆变器
1
maxwell simplorer simulink 永磁同步电机矢量控制联合仿真,电机为分数槽绕组,使用pi控制SVPWM调制,修改文件路径后可使用,软件版本matlab 2017b, Maxwell electronics 2021b 共包含两个文件, Maxwell和Simplorer联合仿真文件,以及Maxwell Simplorer simulink 三者联合仿真文件。 在现代电机控制领域,永磁同步电机(PMSM)由于其高效率、高功率密度和优异的动态性能,在工业和汽车行业中得到广泛应用。矢量控制作为高性能电机控制技术,能够实现电机转矩和磁通的解耦控制,提供更精确的电机运行控制。在此背景下,Maxwell与Simplorer联合仿真以及Simulink环境下的SVPWM调制策略,为复杂电机系统的设计与分析提供了一个强有力的工具。 Maxwell是一种基于有限元分析的电磁场仿真软件,广泛应用于电机设计与电磁场分析中。它可以模拟电机运行时的磁场分布、电流路径、电磁力和热效应等,为电机设计提供精确的仿真数据。Simplorer是Ansys公司提供的多领域系统仿真软件,能够模拟复杂的电子系统和机电系统,支持电磁、电气、热学、控制系统等多个领域的联合仿真。Simulink是MATLAB的扩展产品,它为多域动态系统和嵌入式系统的建模、仿真和综合分析提供了一个集成环境。 本次研究主要关注的是分数槽绕组的永磁同步电机,采用PI(比例-积分)控制策略来实现SVPWM(空间矢量脉宽调制)调制。SVPWM是一种应用于变频器中的高效调制技术,它利用电压空间矢量的原理,在三相逆变器中通过控制开关管的通断,生成接近圆形的三相交流电压,从而提高电机运行效率和降低谐波。PI控制器作为一种常用的线性控制器,能够结合比例控制和积分控制的优点,实现对系统误差的快速响应和消除稳态误差。 本联合仿真研究的文件集包括了丰富的材料,从理论研究到仿真分析,再到结果展示,全面覆盖了联合仿真的整个流程。文档内容不仅涵盖了永磁同步电机矢量控制的理论基础,还包括了对仿真模型的构建、仿真环境的搭建、仿真结果的分析和讨论。特别是对于分数槽绕组的永磁同步电机,研究内容可能还涉及了绕组设计的优化、电机控制策略的改进以及系统性能的提升等。 此外,仿真分析的深度可能还会涉及电机控制参数的优化过程,这包括了对PI控制器参数的调整,对SVPWM调制策略的优化,以及对系统动态响应和稳态性能的综合评估。通过仿真,研究人员可以观察到电机在不同工况下的性能表现,从而为电机控制系统的设计提供依据。 在实际应用中,这种联合仿真方法能够缩短产品研发周期,降低试错成本,同时提供一个安全可靠的测试平台。对于工程师和研究人员而言,掌握Maxwell、Simplorer与Simulink的联合仿真技术,能够更好地进行电机控制系统的设计与优化,具有重要的实用价值和研究意义。 研究成果的文档记录可能还包括了对联合仿真过程中可能出现问题的诊断与解决策略,以及对仿真结果的深入分析和评估。通过详细的研究记录和数据展示,这些文档为后续的研究者和工程师提供了宝贵的经验和参考资料。 本研究的联合仿真文件集合,不仅详细记录了永磁同步电机矢量控制的仿真过程和结果,而且体现了联合仿真技术在电机控制系统开发中的重要作用。研究者通过这种方式,不仅能够深入理解电机控制系统的工作原理,还能够通过仿真优化电机控制策略,提升电机的性能和效率。同时,这也为其他领域的机电系统仿真提供了一种借鉴和参考。
2025-04-03 23:42:19 88KB
1
Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析 Simulink仿真练习-习题+解析Simulink仿真练习-习题+解析
2025-04-03 09:04:39 537KB matlab Simulink
1
直流有刷电机转速电流双闭环PID控制Simulink仿真模型及性能分析,直流有刷电机转速电流双闭环控制。 双环PID直流有刷电机转速控制Simulink仿真模型,模型全是原创搭建,电机模型使用simulink模块simscope自带的DC model,控制器采用了转速,电流双闭环pwm波控制。 图片中分别是: 1. 电机仿真模型 2 3.电机在阶跃情况下和正弦情况下的转速跟踪情况。 4. 电机负载变化图 5 6. 电机在阶跃情况和正弦情况下电机的电流以及扭矩的响应曲线。 7 8. 分别是电机在正弦情况下的PWM波输出。 模型+说明文档 ,核心关键词: 1. 直流有刷电机 2. 转速电流双闭环控制 3. 双环PID控制 4. Simulink仿真模型 5. 阶跃情况 6. 正弦情况 7. 电机跟踪情况 8. 电机负载变化 9. 电流响应曲线 10. 扭矩响应曲线 11. PWM波输出 12. 模型原创搭建 13. 说明文档,基于Simulink仿真的直流有刷电机双闭环PID控制模型研究
2025-04-03 09:03:55 599KB csrf
1
直流有刷电机是大家最早接触的一类电机,中学时物理课堂上介绍电动机也是以它为模型来展示的。直流有刷电机的主要结构就是定子+转子+电刷,通过旋转磁场获得转动力矩,从而输出动能。电刷与换向器不断接触摩擦,在转动中起到导电和换相作用。根据上面的描述可以得出结论,电机的电刷只要通上额定的直流电压就可以使电机旋转,反向接通而定的直流电压就可以使电机反向旋转。看上去确实很简单,那么问题来了,直接接通直流电源,如果电源的电压够大的话,电机肯定按最大的转速运动,但是这样会大大减少电刷的使用寿命,况且我们在实际使用的时候也不需要电机按最大转速运行,那么就需要对电机进行调速了。那么就可以通过PWM来控制全控型电力电子元件的开通与关断,根据面积等效原理,通过增大或者减小PWM的脉冲宽度来控制电力电子元件的开通时间长短,从而实现电机供电电压的大小变化,来控制电机的转速增减,此过程称为变压调速。有刷直流电机的控制相对简单,只需要一个“H桥”即可,所以设置的时候,只需设置控制V1V3和V6V4的PWM信号,V2V5常闭即可,在电机接线的时候,只需将AB两相接到电机上即可。
2025-04-03 08:54:56 28KB simulink matlab
1
在电力电子与电机控制领域中,“无感FOC”即无感矢量控制(Field Oriented Control, FOC),是一种先进的电机控制方法,它能够有效提升交流电机的运行性能。而“转子初始位置”的检测,则是电机启动前确认转子位置的关键步骤,这对于提高启动效率、降低能耗和确保电机平稳运行至关重要。SIMULINK是一种基于MATLAB的仿真环境,它通过图形化界面和模块化设计,让用户能够设计、模拟和分析多域动态系统。 结合以上信息,本文将详细探讨无感FOC在高频方波注入法下如何实现转子初始位置的精确检测。无感FOC技术主要依赖于对电机电流和电压的测量,通过算法来估计电机的转子位置和速度。这种控制策略通常需要精确的电机参数,例如定子电阻、电感以及转动惯量等,但其优势在于能够在没有位置传感器的情况下实现对电机的高性能控制。 在电机启动过程中,转子的位置必须被准确检测出来,以便于控制器能够实施适当的控制策略。传统的转子位置检测方法通常使用传感器来获得位置信息,但这些方法增加了系统的成本和复杂性。而无感FOC中的转子初始位置检测通常采用高频方波注入法来实现,这种方法不需要额外的硬件传感器。 高频方波注入法是一种在线检测技术,它通过在电机定子上注入一个高频的电压或电流信号,根据电机的响应来判断转子的位置。这种方法的核心在于,高频信号会受到转子位置的影响,通过分析电机电压和电流的变化,可以推断出转子的初始位置。 在SIMULINK环境下进行高频方波注入法的仿真,可以直观地观察到信号注入、电机响应以及转子位置估计的过程。仿真的步骤通常包括建立电机模型,搭建控制算法模块,配置参数,注入高频测试信号,以及采集与处理电机的电压和电流信号数据。通过这些数据,算法能够计算出转子的初始位置,并将这个位置信息用于后续的无感FOC控制。 此仿真模型对于电机控制系统的设计和验证尤为关键,因为它能够在实际制造电机之前,帮助工程师了解和预测电机的行为,节约开发成本,并缩短研发周期。同时,该模型也可用于教育和研究领域,作为教学和研究的有力工具。 “无感FOC-高频方波注入检测转子初始位置SIMULINK”这一仿真模型不仅涉及电机学、电力电子和控制理论的知识,也体现了现代控制工程中软件工具的使用和仿真技术的重要性。通过对该模型的研究,工程师能够更好地掌握无感矢量控制技术,并解决实际中无传感器电机控制遇到的转子位置检测问题。
2025-04-01 16:03:21 382KB 无感FOC 转子初始位置 方波注入
1
无感FOC(Field Oriented Control)无传感器控制技术是一种高效能的电机控制方法,其最大的特点是可以在不使用机械传感器的情况下实现对电机的位置和速度的精确控制。在无感FOC技术中,高频方波注入是一种常见的手段,通过向电机定子施加高频激励信号,使得电机的转子位置和速度信息能够被间接提取出来。这种方法在实际应用中对于降低成本、提高系统可靠性和简化结构都具有重要意义。 SIMULINK是MathWorks公司推出的一种基于MATLAB的多领域仿真和基于模型的设计环境,可以用于模拟动态系统,尤其适用于对复杂的电气系统进行仿真。在无感FOC控制策略的研究和设计过程中,SIMULINK提供了一个强大的仿真平台,使得研究者可以在没有实际电机硬件的情况下对控制策略进行验证和优化。 在无感FOC控制策略中,高频方波注入技术的实现通常需要完成以下几个关键步骤: 1. 高频信号的生成与注入:在电机控制信号中叠加一个高频的正弦或方波信号。这个信号的频率要足够高,以保证其对电机的正常运行影响最小,同时又能够方便地被提取出来。 2. 电机模型的建立:使用SIMULINK建立起电机的数学模型,这个模型需要能够模拟电机在高频信号激励下的动态响应。这通常需要考虑电机的电阻、电感、反电动势等多种电气特性。 3. 信号的提取与处理:电机在高频信号激励下会产生相应的响应,通过检测电机的电压或电流,可以利用滤波、解调等信号处理技术,提取出转子的位置和速度信息。 4. 控制算法的实现:利用提取出的位置和速度信息,通过算法计算出电机所需的控制信号,实现对电机的精确控制。 5. 系统仿真与优化:在SIMULINK环境下,通过构建完整的控制系统仿真模型,包括电机模型、信号处理模块和控制算法模块等,对整个系统进行仿真测试,并根据测试结果对控制策略进行调整优化。 无感FOC高频方波注入技术在伺服系统、电动汽车驱动、家用电器等多种应用场合有着广泛的应用前景。通过SIMULINK等仿真工具的辅助,可以在设计初期发现并解决潜在的问题,大幅提高产品设计的成功率和效率。同时,随着计算能力和控制技术的不断进步,无感FOC技术的性能也在不断提高,未来将在更多的领域中得到应用。
2025-04-01 14:50:34 316KB 无感FOC
1
微型燃气轮机Simulink建模下的参数分析与控制策略优化研究,100kW微型燃气轮机Simulink建模,微燃机包括压缩机模块、容积模块、回热器模块、燃烧室模块、膨胀机模块、转子模块以及控制单元模块。 考虑微燃机变工况特性下的流量、压缩绝热效率、膨胀绝热效率、压缩比、膨胀比等参数的变化,可以观察变负载情况下微燃机转速、燃料量、发电效率、排烟温度等等参数的变化情况。 控制器主要包括转速控制、温度控制和加速度控制。 每一个控制环节输出一个燃料基准,经过最小值选择器后作为燃料供给系统的输入信号。 ,核心关键词: 1. 100kW微型燃气轮机 2. Simulink建模 3. 微燃机模块 4. 变工况特性 5. 流量参数 6. 绝热效率 7. 膨胀比 8. 转速 9. 燃料量 10. 发电效率 11. 排烟温度 12. 控制器 13. 转速控制 14. 温度控制 15. 燃料基准,"基于Simulink建模的微型燃气轮机多模块协同控制研究"
2025-04-01 14:20:39 90KB 柔性数组
1
模糊PID控制的永磁同步电机PMSM矢量控制系统:Simulink仿真及其性能分析报告。,模糊PID控制在永磁同步电机矢量控制系统中的Simulink仿真研究,模糊PID控制的永磁同步电机矢量控制系统 simulink 仿真 PMSM永磁同步电机 模糊PID控制 矢量控制SVPWM 模糊PID控制的PMSM的矢量控制系统 simulink 仿真 有报告说明文档,不 ,模糊PID控制; 永磁同步电机; 矢量控制系统; Simulink仿真; SVPWM,基于Simulink仿真的模糊PID-PMSM矢量控制系统研究
2025-03-31 23:48:08 2.56MB ajax
1