新型改进的模糊c均值算法及其应用

上传者: 38499349 | 上传时间: 2021-02-22 18:06:13 | 文件大小: 128KB | 文件类型: PDF
模糊c均值(FCM)聚类算法已广泛应用于许多医学图像分割中。 但是,由于不考虑空间信息,因此常规的标准FCM算法对噪声敏感。 为了克服上述问题,提出了一种新颖的改进的FCM算法(以后称为FCM-AWA)用于图像分割。 该算法是通过修改常规FCM算法中的目标函数,即通过将空间邻域信息合并到标准FCM算法中来实现的。 给出了自适应加权平均(AWA)滤波器以指示相邻像素对中心像素的空间影响。 在实施加权平均图像时,通过预定义的非线性函数自动确定控制模板(邻居寡妇)的参数(加权系数)。 该算法既适用于人工合成图像,又适用于真实图像。 此外,使用基于算法的分割方法对牙菌斑进行了定量分析。 实验结果表明,与标准FCM算法和另一种FCM算法(由Ahmed提出)相比,该算法对噪声的鲁棒性更高。 此外,使用所提出的方法对牙菌斑进行定量的结果表明,FCM-AWA提供了一种定量,客观和有效的牙菌斑分析方法,具有广阔的前景。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明