案例14 SVM神经网络的回归预测分析---上证开盘指数预测.7z
2022-05-15 18:00:53 156KB 支持向量机 神经网络 回归 文档资料
采用了matlab中的fictsvm训练函数,predict预测。
2022-05-15 16:06:26 11.35MB 支持向量机 算法 源码软件 matlab
1
matlab姿态识别系统源码运行 Face-Recognition Practice of two Pattern Recognition methods. Face Recognition based on SVM and SRC. 一 背景 1.1 支持向量机简介 支持向量机(Support Vector Machine,SVM)是AT&TBell 实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函数回归、估计、函数逼近、密度估计、时间序列预测及数据压缩、文本过滤、数据挖掘、非线性系统控制等各个领域的实际问题中。 支持向量机是一种二分类模型,其基本定义是特征空间上的间隔最大的线性分类器(当采用线性核时),即支持向量机的学习策略是间隔最大化,最终转化为凸二次规划问题的求解。该方法在1995年正式发表,因其在文本分类任务中显示出卓越性能,很快成为
2022-05-15 15:32:08 589KB 系统开源
1
案例12 SVM神经网络的数据分类预测-葡萄酒种类识别.7z
2022-05-15 14:06:56 35KB 支持向量机 神经网络 分类 文档资料
基于matlab的PCA主成分分析实例,用不同浓度的混合物的拉曼光谱作为数据进行试验。学习PCA的数据处理方法。 pca主成分分析一般指主成分分析。 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 欢迎交流学习~
2022-05-14 22:29:14 2.26MB matlab 文档资料 开发语言
1
早期的癌症预测非常重要,因为患者可以准备应对它。 有几种机器学习模型可以通过识别高风险的独立样本来帮助预测癌症,从而简化癌症试验的设计和规划。 这些模型使用生物标志物(例如年龄,更年期,肿瘤大小,肿瘤,乳房,乳房四分之一尺度)来预测乳腺癌。 但是,这些模型的主要缺点是后期预测以及准确性低。 因此,在这里介绍一种使用基因表达谱(基因组数据)来早期预测乳腺癌的系统。 该模型是使用不同的机器学习算法构建的,例如高度通用的支持向量机(SVM),朴素贝叶斯定理,决策树和最近邻居方法,可使用基因表达谱预测乳腺癌。
2022-05-14 18:15:28 318KB SVM (Support Vector Machine)
1
使用opencv扩展模块进行机器学习SVM进行手写数字分类
2022-05-14 16:05:40 970KB opencv 机器学习 支持向量机 分类
1
基于 PCA 与 KPCA 的 TE 过程故障检测,MATLAB代码 + 文章!内含MATLAB源代码、PDF文档、word文档,做毕设或者做相关研究的人可以用到!
产品评论的情感倾向性分析是一个很有研究价值的领域,可以帮助客户、商家进行决策。针对产品评论中的属性词和情感词在文本中的各种关系,制定了8组特征选择规则,利用SVM算法训练模型来判断属性词和情感词的搭配识别,进而依据情感词及否定词等分析属性特征的情感倾向。实验结果表明:提出的基于SVM的搭配识别方法,在识别属性特征与情感词的搭配方面具有不错的分类效果。
2022-05-13 23:06:11 381KB 工程技术 论文
1
SVM_支持向量机基本原理及应用 详细介绍了SVM算法
2022-05-13 22:47:58 1003KB 支持向量机
1