为了将图像中内容特征相近的像素尽可能分割到同一区块,提高图像分割的针对性和自适应性,提出了一种基于有序数据聚类的图像自适应分条算法。该算法首先计算图像中所有像素点的梯度值,相加每列像素梯度值得到列累积能量;然后对能量数据进行加权平滑生成连续曲线,用该平滑曲线的凹凸性自适应确定图像分条总数;最后构造图像列累积能量数据的条件距离矩阵,由已确定的分条数采用系统聚类的方法实现图像分条。分条实验结果对比表明,提出的算法能根据不同图像内容自适应地进行图像条分割,且将分条结果应用于图像内容感知缩放研究中可获得满意的缩放效果,因此该算法能较好地对图像内容进行分类和识别。
1
一种基于雨线主方向自适应的全局稀疏去雨模型.pdf
2022-08-19 15:17:33 2.01MB 文档资料
紫外线matlab代码艾达网 AdaNet:人工神经网络的自适应结构学习 参考资料:Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M. & Yang, S.. (2017)。 AdaNet:人工神经网络的自适应结构学习。 第 34 届机器学习国际会议论文集,PMLR 70:874-883 这个 Python 项目旨在实现 AdaNet 的 API,使用基于文章的算法:简而言之,这个模型正在根据它适合的数据复杂性从头构建一个神经网络, 这就是它命名为自适应模型的原因。 对于这个实现,手头的问题总是一个二元分类。 在拟合操作期间,它将构建隐藏层和每层中的神经元数量。 决定是更深(添加隐藏层)还是更宽(将神经元添加到现有层), 或者更新现有的神经元权重以封闭的计算形式完成(通过使用巴拿赫空间对偶)文章中所示。 最后,它将优化最佳神经元(添加或现有)的权重,更新参数并进行迭代。 文章讲了AdaNet的几个变种,这是AdaNet.CVX的实现, 在附录 C 中解释 - 以封闭形式解决每个步骤中的凸子问题。 文章 [v.1] 的先前版本中显示了对该
2022-08-19 12:02:35 39.86MB 系统开源
1
为了提高铁路货运量的预测精度及建模速度,将灰色预测模型(GM(1,1))、最小二乘支持向量机(LSSVM)和自适应粒子群优化(APSO)算法相融合,建立了灰色自适应粒子群最小二乘支持向量机(GM-APSO-LSSVM)预测模型。通过灰色预测模型中的灰色序列算子,弱化原始数列随机性,挖掘数列中蕴含的规律,利用最小二乘支持向量机计算简便、求解速度快、非线性映射能力强的特点进行预测,并采用自适应粒子群算法优化选择LSSVM参数。对我国铁路货运量的实例分析表明:用该模型得到的评价指标RMSE,MAE,MPE和Th
2022-08-18 16:34:41 476KB 工程技术 论文
1
改善败血症治疗策略 这是论文“使用深度强化学习和专家混合改善脓毒症治疗策略”的代码库 评论者评论 表1中的数据清楚地显示了数据集幸存者/非幸存者的失衡率。 学习不平衡会导致分类器的预测模型出现偏差。 但是,作者没有详细说明他们如何通过使用特定的重新平衡方法或对成本敏感的学习方法来解决此问题,但未提供任何评论。 数据集分为固定的75%训练和验证集和25%的测试集。“->作者应使用10倍交叉验证。 如表2所示,尽管他们的专家混合(MoE)方法的性能在数值上优于医师,内核和DQN的性能,但分析这种数值增加的显着性还是不错的。 随机策略会产生什么效果? 有没有一种方法可以衡量这些方法之间的性能差异的重要性? 本文未介绍其方法的任何时间性能。 训练这种方法需要多长时间? 这个培训时间对于为ICU患者制定个性化治疗策略是否可行? RL和Deep网络都因训练时间长而臭名昭著。 动机 败血症是IC
2022-08-16 14:27:18 478KB JupyterNotebook
1
真正企业级的Thinkphp5自适应自动发卡平台源码
2022-08-15 10:03:52 45.98MB Thinkphp5 自适应自动发卡平台
1
基于MATLAB和Simulink Robotics Arena的行走机器人示例
2022-08-15 09:08:34 149.81MB 机器人 人工智能 强化学习 神经网络
1
本程序详尽的描述了格型滤波器的算法并附有说明
2022-08-13 16:39:39 830B matlab 自适应 格型滤波器
1
网站模板 自适应模版 HTML+CSS
2022-08-12 19:05:15 2.03MB 自适应模版
1
手机电脑模版自适应网站
2022-08-12 19:05:14 11.64MB 自适应网站
1