[{"title":"( 57 个子文件 39.86MB ) 建筑物提取matlab代码-adanet:基于文章AdaNet-人工神经网络的自适应结构学习","children":[{"title":"adanet-master","children":[{"title":"twospirals.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"adanet_val_results.csv <span style='color:#111;'> 9.86KB </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v1.pdf <span style='color:#111;'> 593.32KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"AdaNet - NN compared model-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"Adanet-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"AdaNet - LR compared model-checkpoint.ipynb <span style='color:#111;'> 51.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"AdaNet_CIFAR_10_feature_extraction.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"tic-tac-toe","children":[{"title":"tic-tac-toe.names.txt <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"tic-tac-toe.data <span style='color:#111;'> 25.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"AdaNet - LR compared model.ipynb <span style='color:#111;'> 54.93KB </span>","children":null,"spread":false},{"title":"Adanet.ipynb <span style='color:#111;'> 58.98KB </span>","children":null,"spread":false},{"title":"AdaNet_CVX.py <span style='color:#111;'> 52.09KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"CIFAR10_pair_cat_dog.npz <span style='color:#111;'> 7.30MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_automobile_truck.npz <span style='color:#111;'> 7.71MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_deer_horse.npz <span style='color:#111;'> 6.98MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_dog_horse.npz <span style='color:#111;'> 7.28MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_deer_truck.npz <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"test_adanet.py <span style='color:#111;'> 24.05KB </span>","children":null,"spread":false},{"title":"test_results.csv <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v2.pdf <span style='color:#111;'> 497.00KB </span>","children":null,"spread":false},{"title":"MLP_val_results.csv <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"AdaNet_CIFAR_10_feature_extraction.cpython-36.pyc <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"AdaNet_CVX.cpython-36.pyc <span style='color:#111;'> 38.46KB </span>","children":null,"spread":false},{"title":"twospirals.cpython-36.pyc <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"LR_val_results.csv <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"AdaNet_FinalReport.pdf <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"MD template.md <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v3.pdf <span style='color:#111;'> 524.07KB </span>","children":null,"spread":false},{"title":"AdaNet - NN compared model.ipynb <span style='color:#111;'> 64.23KB </span>","children":null,"spread":false},{"title":"tuning","children":[{"title":"LAM100_T300_BFGS_stopped.png <span style='color:#111;'> 45.92KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300.png <span style='color:#111;'> 33.24KB </span>","children":null,"spread":false},{"title":"LAM100_T300_StoppedAt67.png <span style='color:#111;'> 46.72KB </span>","children":null,"spread":false},{"title":"LAM0.1_20EpochConvergeT500.png <span style='color:#111;'> 33.77KB </span>","children":null,"spread":false},{"title":"German_LAM1_T300.png <span style='color:#111;'> 40.51KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300_convergeStop_BFGS.png <span style='color:#111;'> 35.85KB </span>","children":null,"spread":false},{"title":"LAM10_T300_BFGS.png <span style='color:#111;'> 44.29KB </span>","children":null,"spread":false},{"title":"results.csv <span style='color:#111;'> 20.82KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-5_augTrue_20EpochConverge.png <span style='color:#111;'> 31.02KB </span>","children":null,"spread":false},{"title":"German_LAM0.1_T300_BFGS.png <span style='color:#111;'> 35.65KB </span>","children":null,"spread":false},{"title":"German_LAM10_T300.png <span style='color:#111;'> 48.35KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-5_augFalse_10EpochConverge.png <span style='color:#111;'> 30.03KB </span>","children":null,"spread":false},{"title":"German_LAM10_T300_BFGS.png <span style='color:#111;'> 48.32KB </span>","children":null,"spread":false},{"title":"LAM1_T300_BFGS.png <span style='color:#111;'> 44.43KB </span>","children":null,"spread":false},{"title":"German_LAM1_T300_BFGS.png <span style='color:#111;'> 39.75KB </span>","children":null,"spread":false},{"title":"LAM0.1_10EpochConverge.png <span style='color:#111;'> 29.58KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-4_augFalse_20EpochConverge.png <span style='color:#111;'> 30.22KB </span>","children":null,"spread":false},{"title":"German_LAM100_T300.png <span style='color:#111;'> 49.15KB </span>","children":null,"spread":false},{"title":"LAM1_T300_Stopped.png <span style='color:#111;'> 45.12KB </span>","children":null,"spread":false},{"title":"LAM1_T300_StoppedAt113.png <span style='color:#111;'> 44.88KB </span>","children":null,"spread":false},{"title":"LAM10_T300_StoppedAt67.png <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"LAM10_T300.png <span style='color:#111;'> 43.87KB </span>","children":null,"spread":false},{"title":"LAM0.1_20EpochConverge.png <span style='color:#111;'> 29.19KB </span>","children":null,"spread":false},{"title":"German_LAM100_T300_BFGS.png <span style='color:#111;'> 43.59KB </span>","children":null,"spread":false},{"title":"German_LAM0.1_T300.png <span style='color:#111;'> 35.16KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300_convergeStop.png <span style='color:#111;'> 33.55KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]