建筑物提取matlab代码-adanet:基于文章AdaNet-人工神经网络的自适应结构学习

上传者: 38551205 | 上传时间: 2022-08-19 12:02:35 | 文件大小: 39.86MB | 文件类型: ZIP
紫外线matlab代码艾达网 AdaNet:人工神经网络的自适应结构学习 参考资料:Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M. & Yang, S.. (2017)。 AdaNet:人工神经网络的自适应结构学习。 第 34 届机器学习国际会议论文集,PMLR 70:874-883 这个 Python 项目旨在实现 AdaNet 的 API,使用基于文章的算法:简而言之,这个模型正在根据它适合的数据复杂性从头构建一个神经网络, 这就是它命名为自适应模型的原因。 对于这个实现,手头的问题总是一个二元分类。 在拟合操作期间,它将构建隐藏层和每层中的神经元数量。 决定是更深(添加隐藏层)还是更宽(将神经元添加到现有层), 或者更新现有的神经元权重以封闭的计算形式完成(通过使用巴拿赫空间对偶)文章中所示。 最后,它将优化最佳神经元(添加或现有)的权重,更新参数并进行迭代。 文章讲了AdaNet的几个变种,这是AdaNet.CVX的实现, 在附录 C 中解释 - 以封闭形式解决每个步骤中的凸子问题。 文章 [v.1] 的先前版本中显示了对该

文件下载

资源详情

[{"title":"( 57 个子文件 39.86MB ) 建筑物提取matlab代码-adanet:基于文章AdaNet-人工神经网络的自适应结构学习","children":[{"title":"adanet-master","children":[{"title":"twospirals.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"adanet_val_results.csv <span style='color:#111;'> 9.86KB </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v1.pdf <span style='color:#111;'> 593.32KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"AdaNet - NN compared model-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"Adanet-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"AdaNet - LR compared model-checkpoint.ipynb <span style='color:#111;'> 51.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"AdaNet_CIFAR_10_feature_extraction.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"tic-tac-toe","children":[{"title":"tic-tac-toe.names.txt <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"tic-tac-toe.data <span style='color:#111;'> 25.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"AdaNet - LR compared model.ipynb <span style='color:#111;'> 54.93KB </span>","children":null,"spread":false},{"title":"Adanet.ipynb <span style='color:#111;'> 58.98KB </span>","children":null,"spread":false},{"title":"AdaNet_CVX.py <span style='color:#111;'> 52.09KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"CIFAR10_pair_cat_dog.npz <span style='color:#111;'> 7.30MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_automobile_truck.npz <span style='color:#111;'> 7.71MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_deer_horse.npz <span style='color:#111;'> 6.98MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_dog_horse.npz <span style='color:#111;'> 7.28MB </span>","children":null,"spread":false},{"title":"CIFAR10_pair_deer_truck.npz <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"test_adanet.py <span style='color:#111;'> 24.05KB </span>","children":null,"spread":false},{"title":"test_results.csv <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v2.pdf <span style='color:#111;'> 497.00KB </span>","children":null,"spread":false},{"title":"MLP_val_results.csv <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"AdaNet_CIFAR_10_feature_extraction.cpython-36.pyc <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"AdaNet_CVX.cpython-36.pyc <span style='color:#111;'> 38.46KB </span>","children":null,"spread":false},{"title":"twospirals.cpython-36.pyc <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"LR_val_results.csv <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"AdaNet_FinalReport.pdf <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"‫MD template.md <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"AdaNet- Adaptive Structural Learning of Artificial Neural Networks___1607.01097v3.pdf <span style='color:#111;'> 524.07KB </span>","children":null,"spread":false},{"title":"AdaNet - NN compared model.ipynb <span style='color:#111;'> 64.23KB </span>","children":null,"spread":false},{"title":"tuning","children":[{"title":"LAM100_T300_BFGS_stopped.png <span style='color:#111;'> 45.92KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300.png <span style='color:#111;'> 33.24KB </span>","children":null,"spread":false},{"title":"LAM100_T300_StoppedAt67.png <span style='color:#111;'> 46.72KB </span>","children":null,"spread":false},{"title":"LAM0.1_20EpochConvergeT500.png <span style='color:#111;'> 33.77KB </span>","children":null,"spread":false},{"title":"German_LAM1_T300.png <span style='color:#111;'> 40.51KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300_convergeStop_BFGS.png <span style='color:#111;'> 35.85KB </span>","children":null,"spread":false},{"title":"LAM10_T300_BFGS.png <span style='color:#111;'> 44.29KB </span>","children":null,"spread":false},{"title":"results.csv <span style='color:#111;'> 20.82KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-5_augTrue_20EpochConverge.png <span style='color:#111;'> 31.02KB </span>","children":null,"spread":false},{"title":"German_LAM0.1_T300_BFGS.png <span style='color:#111;'> 35.65KB </span>","children":null,"spread":false},{"title":"German_LAM10_T300.png <span style='color:#111;'> 48.35KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-5_augFalse_10EpochConverge.png <span style='color:#111;'> 30.03KB </span>","children":null,"spread":false},{"title":"German_LAM10_T300_BFGS.png <span style='color:#111;'> 48.32KB </span>","children":null,"spread":false},{"title":"LAM1_T300_BFGS.png <span style='color:#111;'> 44.43KB </span>","children":null,"spread":false},{"title":"German_LAM1_T300_BFGS.png <span style='color:#111;'> 39.75KB </span>","children":null,"spread":false},{"title":"LAM0.1_10EpochConverge.png <span style='color:#111;'> 29.58KB </span>","children":null,"spread":false},{"title":"LAM0.1_lam-4_augFalse_20EpochConverge.png <span style='color:#111;'> 30.22KB </span>","children":null,"spread":false},{"title":"German_LAM100_T300.png <span style='color:#111;'> 49.15KB </span>","children":null,"spread":false},{"title":"LAM1_T300_Stopped.png <span style='color:#111;'> 45.12KB </span>","children":null,"spread":false},{"title":"LAM1_T300_StoppedAt113.png <span style='color:#111;'> 44.88KB </span>","children":null,"spread":false},{"title":"LAM10_T300_StoppedAt67.png <span style='color:#111;'> 47.24KB </span>","children":null,"spread":false},{"title":"LAM10_T300.png <span style='color:#111;'> 43.87KB </span>","children":null,"spread":false},{"title":"LAM0.1_20EpochConverge.png <span style='color:#111;'> 29.19KB </span>","children":null,"spread":false},{"title":"German_LAM100_T300_BFGS.png <span style='color:#111;'> 43.59KB </span>","children":null,"spread":false},{"title":"German_LAM0.1_T300.png <span style='color:#111;'> 35.16KB </span>","children":null,"spread":false},{"title":"LAM0.1_T300_convergeStop.png <span style='color:#111;'> 33.55KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明