python生成三维球体骨料
2024-04-16 20:49:39 4KB python
1
“超过100 FPS的多人3D姿势估计的跨视图跟踪”数据集 注意:回购包含本文中使用的数据集,包括Campus,Shelf,StoreLayout1,StoreLayout2。 连同数据一起,我们提供了一些脚本来可视化2D和3D数据,并评估结果。 不包括源代码,因为这是一个商业项目,如果您有兴趣,请在找到更多信息。 数据集 在这里,我们提供了四个数据集,包括 校园: : 架子: : StoreLayout1:由AiFi Inc.提出。 StoreLayout2:由AiFi Inc.提出。 为了方便起见,您可以一键式从找到并下载它们。 数据结构 对于每个数据集,目录的结构组织如下 Campus_Seq1 ├── annotation_2d.json ├── annotation_3d.json ├── calibration.json ├── detection.json ├─
2024-04-16 17:13:16 21KB Python
1
调用百度语音识别API,Python SDK。并评估WER词错误率
2024-04-16 16:49:31 38.14MB 语音识别 python
1
Pytorch InsightFace 将来自预训练的ResNet模型移植到pytorch。 模型 LFW(%) CFP-FP(%) AgeDB-30(%) MegaFace(%) iresnet34 99.65 92.12 97.70 96.70 iresnet50 99.80 92.74 97.76 97.64 iresnet100 99.77 98.27 98.28 98.47 安装 pip install git+https://github.com/nizhib/pytorch-insightface 用法 import torch from imageio import imread from torchvision import transforms import insightface embedder = insightface
2024-04-16 16:41:15 23KB Python
1
Python Concurrency with asyncio
2024-04-16 10:53:41 6.07MB python 开发语言
1
Deep Learning With Python_中文版+英文版+代码 目前来看是最全的
2024-04-16 10:23:06 29.91MB PYTHON Deep
1
本文实例为大家分享了python学生信息管理系统的具体代码,供大家参考,具体内容如下 #编译环境为python3 #学生信息管理系统包括基本的信息功能,能够实现学生信息的输入,查询,增添和删除 #基本框架:开始操作菜单,接收输入选项,调用相应的函数实现对应的功能,循环回到开始菜单, #操作菜单: student = [] def studentMeau(): print('-'*30) print('-------学生信息管理系统-------') print(' 1、添加学生信息') print(' 2、删除学生信息') print(' 3、查询学生信息') prin
2024-04-16 10:16:56 41KB input python python函数
1
开发软件:Pycharm + Python3.7 + Django + Echarts + Mysql 实现目标:利用已经收集各个城市包括北京、上海、广州、成都、沈阳的PM2.5空气数据,利用python进行各种数据分析,将分析结果保存到csv文件中,然后利用django框架的网站,前端采用echart对分析的结果进行图表可视化展示。
2024-04-16 09:11:05 12.37MB python django
1
旅行商问题(Travelling Salesman Problem, TSP)是一个经典的组合优化问题。在这个问题中,一个旅行商需要访问所有指定的城市,并最后返回到原始城市,但是每次只能访问一个城市,并且不能重复。目标是找到一条最短的可能路线。 这个问题是一个NP-hard问题,意味着没有已知的多项式时间算法可以解决所有实例。但是,可以使用近似算法或启发式方法来找到接近最优的解。 以下是一个简单的Python实现,使用贪婪算法来解决TSP问题: 注意:贪婪算法并不保证找到最优解,但它通常可以找到一个相对较好的解,并且运行时间相对较短。对于大型问题,可能需要使用更复杂的算法,如遗传算法、模拟退火或线性规划方法。
2024-04-16 01:08:00 1KB python
1
模拟退火算法(Simulated Annealing, SA)是一种概率型优化算法,用于在给定大的搜索空间内寻找问题的最优解。该算法模仿了物理退火过程,即固体物质加热后再缓慢冷却以减少系统的能量,达到更稳定的状态。在模拟退火中,"能量"对应于优化问题的目标函数值,"温度"则是一个控制参数,用于决定接受较差解的概率,以避免陷入局部最优。 以下是一个使用Python实现的模拟退火算法示例: 在这个例子中,cost_function 是我们要优化的目标函数,neighbour_function 用于生成当前解的邻近解,simulated_annealing 函数实现了模拟退火算法的主体逻辑。我们从一个随机初始化解开始,通过不断迭代、生成新解、评估和接受或拒绝新解来寻找最优解。 请注意,模拟退火算法的性能高度依赖于初始温度、降温速率、最大迭代次数等参数的设置,以及邻居函数和目标函数的设计。在实际应用中,可能需要根据具体问题调整这些参数和函数。
2024-04-16 01:06:18 2KB 模拟退火算法 python
1