pix2pix 有条件对抗网络的图像到图像翻译的PyTorch实现 纸和官方代码 介绍 Pix2Pix是一个图像到图像的翻译项目,它可以做很多事情,下面仅显示其中一些: 它基于条件GAN,其中条件不是矢量或图像,而是图像。如下所示: 发电机 本文比较了两种不同的生成器,编码解码器和U-Net。 结果表明,U-Net可以做得更好,这可能是因为U-Net具有一些跳过连接,这使您可以更好地了解底层功能。 判别器 本文使用patchGAN作为判别器,这意味着我们不判断整个图像对,而是判断一些图像补丁,然后取平均值。 这样可以加快训练阶段,并可以处理不同大小的图像。 数据集 团队还会发布一些不错的数据集,您可以免费下载。 我将使用城市景观数据集。 您可以下载自己喜欢的数据集并放入数据子目录。 要求 火炬0.4.0 火炬视觉 火 我使用pytorch 0.4.0来构建此项目,因此您需要更新py
2024-04-15 23:08:01 9.42MB Python
1
所使用的开发环境:Windows10、python(PyCharm)环境 注意:expression已给,包括测试的例子,但是需要词法分析器分析出的token表,格式:(行数, token分类, token内容),可以配套我的词法分析器使用。 要求:创建一个使用LR(1) 方法的语法分析程序,程序有两个输入:1)一个是文本文档,其中包含2º型文法(上下文无关文法)的产生式集合;2)任务1词法分析程序输出的(生成的)token令牌表。程序的输出包括:YES或NO(源代码字符串符合此2º型文法,或者源代码字符串不符合此2º型文法);错误提示文件,如果有语法错标示出错行号,并给出大致的出错原因。 项目简介:程序读入上下文无关文法,并进行拓广文法,将产生式依次形成项目进行储存,设定好起点进行处理得到完整的项目集族,按照项目集族之间的转换得到action、goto表,读取词法分析得到的token,按照之前得到的action、goto表进行处理,得到语法分析的结果,查看是否符合自己设定的语法,如果出错可以形成缺失或者错误导致的错误报告,并输出到result.txt(正确会得到‘YES’)。
1
【2022.11.11更新】之前四篇文章论证了利用二维码传输文件的可行性,本章使用python的tkinter库开发【动态二维码文件发送端】,发送端具备文件选择、开始发送文件、停止发送文件以及显示发送状态的功能。经过简单分析,要开发该程序,需要完成以下五个步骤,1)程序的界面设计;2)选择文件功能开发;3)文件拆分成二维码功能开发;4)发送和停止线程开发;5)发送状态更新功能开发。接一下一个一个步骤进行研究。
2024-04-15 17:58:16 8KB python 二维码 tkinter 文件发送
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-04-15 17:07:04 99KB python 爬虫 数据收集
1
压缩包中含有【人眼识别+眨眼识别】源代码以及详细使用教程,利用pyrhon+opencv在ubuntu上运行,实现实时的检测,windows环境的配置需要自己在网上找相关教程,注意,压缩包中缺少的imutils库需另外从我的资源中下载,谢谢大家
2024-04-15 17:03:02 68.47MB Python 人眼识别 眨眼检测
1
Python基于深度学习的交通流预测(SAEs、LSTM、GRU) Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 Train the model Run command below to train the model: python train.py --model model_name You can choose "lstm", "gru" or "saes" as arguments. The .h5 weight file was saved at model folder. Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan
2024-04-15 16:40:21 6.42MB LSTM
1
Python3.9 的 dlib 64位whl文件
2024-04-15 15:23:02 2.81MB python dlib 人脸识别
1
华为OD机考-统一考试机试-含ABCD卷-含java、c++、JavaScript、python-题目截止到2023年年底
2024-04-15 15:00:38 7.78MB java javascript python
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-04-15 14:56:00 183KB 爬虫 python 数据收集