Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
国外电机控制类教材,晶体管、控制策略、交直流调速系统等等的介绍
2023-03-15 08:45:27 58.54MB motor contro 电机控制
1
Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®
2023-03-14 16:19:14 11.94MB matlab
1
1 Introduction and Overview Thucydides Xanthopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Clock Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Some Subjective Milestones in the History of Microprocessor Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Integrating the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Clock Distribution Moves to the Forefront: The Dawn of the GHz Race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Delay Lock Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Exploiting Inductance for Oscillation and Distribution . . . . . . . . . 5 1.2.5 Variable Frequency (and Voltage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.6 Frequency Increase (or Supply Lowering) Through Resiliency . . . 6 1.3 Overview of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Modern Clock Distribution Systems Simon Tam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Definitions and Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Setup and Hold Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Clock Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Static and Dynamic Clock Uncertainties . . . . . . . . . . . . . . . . . . . . . 14 Distribution Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 Clock Distribution Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Clock Distribution Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Unconstrained Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Balanced Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Central Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4 Spines with Matched Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.6 Hybrid Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Microprocessor Clock Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Clock Design for Test and Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Global and Local Clock Compensations. . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 Global Clock Compensation Architecture . . . . . . . . . . . . . . . . . . . . 37 2.5.3 Local Clock Compensation Architecture . . . . . . . . . . . . . . . . . . . . . 43 2.6 Elements of Clock Distribution Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.1 Clock Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.7 Clock DFX Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Optical Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 On-Die Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Locating Critical Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7.4 On-Die-Clock Shrink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 Multiclock Domain Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.8.1 Multicore Processor Clock Distribution . . . . . . . . . . . . . . . . . . . . . . 55 2.9 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Clocked Elements James Warnock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 CSE Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.2 Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.4 Scan Design for CSEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3 Static Latch Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.1 Master–Slave Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Two-Phase Level-Sensitive Latches . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.3 Pulsed-Clock Static Level-Sensitive Latches . . . . . . . . . . . . . . . . . . 78 3.4 Flip-Flop Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Sense-Amp Style Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.2 Hybrid Latch Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.3 Semi-Dynamic Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Test and Debug Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6 CSE Design for Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.1 Variability-Induced Frequency Degradation . . . . . . . . . . . . . . . . . . . 88 3.6.2 Variability-Induced Functional Failures . . . . . . . . . . . . . . . . . . . . . . 89 3.7 Reliability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7.1 Soft Error Rate Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7.2 End of Life Considerations for CSE Design . . . . . . . . . . . . . . . . . . 93 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4 Exploiting Inductance Nestoras Tzartzanis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Monolithic Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Spiral Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3 Inductor-Based Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.1 Differential LC VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.2 Quadrature LC VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.3 Distributed VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.4 Poly-Phase Circularly Distributed VCO . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Clock Distribution Using Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.1 Rotary Traveling-Wave Oscillator Arrays . . . . . . . . . . . . . . . . . . . . 123 4.4.2 Standing Wave Oscillator and Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.4.3 Inductor-Based Resonant Global Clock Distribution . . . . . . . . . . . 128 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 Phase Noise and Jitter Scott Meninger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 Timing Error in the Time Domain: Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.1 Phase Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2 Period Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.3 Cycle-to-Cycle Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 Timing Error in the Frequency Domain: Phase Noise . . . . . . . . . . . . . . . . . 142 5.3.1 Relationship Between Phase Noise and Jitter . . . . . . . . . . . . . . . . . 143 5.4 Frequency Domain Modeling of PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.4.1 PLL Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.4.2 PLL Intrinsic Noise: VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.4.3 PLL Intrinsic Noise: Feedback Divider . . . . . . . . . . . . . . . . . . . . . . 146 5.4.4 PLL Intrinsic Noise: Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.5 PLL Intrinsic Noise: Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4.6 PLL Intrinsic Noise: Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.7 PLL Extrinsic Noise: Reference Clock . . . . . . . . . . . . . . . . . . . . . . . 151 5.4.8 PLL Extrinsic Noise: Supply Noise . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.9 PLL Extrinsic Noise: Buffer Delay and Noise . . . . . . . . . . . . . . . . . 152 5.4.10 PLL Phase Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Some Intuition on Reference Clock Phase Noise (or Jitter) Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.4.11 Phase Noise to Period Jitter and Phase Noise to C2C Jitter . . . . . . 156 5.4.12 Phase, Period, and C2C Jitter Examples . . . . . . . . . . . . . . . . . . . . . . 159 Phase Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Period Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 C2C Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.5 Reference Clock Jitter Transfer Example: Microprocessor . . . . . . . . . . . . . 161 5.5.1 A Proposed Core Clock Methodology Using Mean Time Between Failures (MTBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.6 Non-Random Jitter Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.6.1 Reference Spurs in PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.6.2 Duty Cycle Distortion (DCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.6.3 Power Supply Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.6.4 Inter-Symbol Interference (ISI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.6.5 Including Deterministic Jitter in Analysis . . . . . . . . . . . . . . . . . . . . 172 5.7 Reference Clock Jitter Transfer Example: Serial Link . . . . . . . . . . . . . . . . . 173 5.7.1 Serial Link Budgeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.7.2 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.7.3 Serial Link Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.8 Delay Locked Loops (DLLs) and Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6 Digital Delay Lock Techniques Thucydides Xanthopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.2 What Constitutes a Digital Delay Locked Loop? . . . . . . . . . . . . . . . . . . . . . 183 6.3 An Overview of DLL Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.4 Phase Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4.1 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 An Example of Phase Detector Failure Calculation . . . . . . . . . . . . 201 6.5 DCDL Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5.1 Gate-Delay DCDLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Synchronous vs. Asynchronous Operation in Coarse DCDLs . . . . 207 6.5.2 Subgate-Delay DCDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.5.3 Resolution vs. Dynamic Range in DCDLs . . . . . . . . . . . . . . . . . . . . 211 6.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 6.6.1 Sensitivity to Initial Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.6.2 Dynamic Range Increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.6.3 Stability and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.6.4 Lock Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.7 Putting it All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.8 Noise Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.9 Advanced Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.1 Duty Cycle Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.2 Clock Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.3 Infinite Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.9.4 Clock-Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.9.5 On-Chip Temperature Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 7 Clocking and Variation James Tschanz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.2 Variation Reduction Through Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.2.1 Skew and Jitter-Tolerant Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.2.2 Time Borrowing for Datapath Variation Reduction . . . . . . . . . . . . . 246 7.3 Variation Reduction Through Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.3.1 Manufacturing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.3.2 Active Clock Deskew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.3.3 Dynamic Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 7.4 Variation Reduction Through Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.4.1 Timing Error Detection – Error Detection Sequentials . . . . . . . . . . 262 7.4.2 Timing Error Correction and Recovery . . . . . . . . . . . . . . . . . . . . . . 266 7.4.3 Results: Guardband Reduction Through Resiliency . . . . . . . . . . . . 268 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8 Physical Design Considerations Georgios Konstadinidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.2 Clock Skew Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.2.1 Setup Time Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8.2.2 Hold Time Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.3 Half-Cycle Setup Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.4 Multiple-Cycle Setup Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.5 Grid or H-Tree? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.3 Transistor Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.3.1 Channel Length Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Photolithography Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Poly Flaring and Poly Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Line Edge Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Channel Length Variation Control. . . . . . . . . . . . . . . . . . . . . . . . . . . 288 8.3.2 Dopant Fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.3.3 Well Proximity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 8.3.4 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Stress Memorization and Tensile Stress Liner . . . . . . . . . . . . . . . . . 293 SiGe and Compressive Stress Liner . . . . . . . . . . . . . . . . . . . . . . . . . 293 Shallow Trench Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 New Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 8.3.5 Long Term Effects on Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 NBTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Hot Carrier Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 8.4 Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 8.5 Temperature Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.6 Interconnect Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 8.7 Conclusion: Clock Design and Analysis Guidelines: Putting All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 8.7.1 Clock Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 8.7.2 Minimizing Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2023-03-07 14:53:36 12.02MB clock VLSI ASIC
1
Stability Theory of Switched Dynamical Systems
2023-03-07 11:13:39 3.79MB Stability Switched Systems
1
vs运行matlab代码使用MMSE标准对毫米波系统进行混合波束形成 介绍 Matlab仿真代码,用于使用MMSE准则进行毫米波系统的混合波束成形。 该论文于2019年1月发表在IEEE通信事务上。如果这些代码对您的工作有所帮助,您可以选择引用该论文,而不是必需的。 可以在以下位置找到本文的pdf文件: IEEE链接: Arxiv链接:。 另外,我建议我的最新工作是使用深度学习解决HBF设计问题。 这项工作可以参考 IEEE链接: Arxiv链接: 并且所有代码都在打开。 我仅针对窄带情况更新代码,但对宽带的扩展非常简单。 可以参考我的另一个名为“ August_mmwave”的存储库。 但是,后者的格式不好,因此不易阅读。 我现在没有足够的时间,所以也许将来会更新。 如何使用 这段代码确实是要使用的。 首先,您应该将所有软件包全部添加到路径中,以便可以使用这些功能。 然后,直接运行main_vs_SNR.m文件。 内容 这些代码包括我的论文中提到的几种算法,这些便捷的API都可以轻松引用所有这些算法。 结尾 由于时间限制,我最近不会更新它。 但是,如果您有任何问题,可以直接通过电子邮
2023-03-07 11:08:28 29KB 系统开源
1
英文版的,电驴好不容易拖下来的。我没有仔细地看下去,感兴趣的可以下载看看
2023-03-05 23:11:07 10.12MB 信号与系统 MATLAB signals and
1
CSAPP 第二版(Computer.Systems:A.Programmer's.Perspective)[英文原版]
2023-03-05 17:17:29 4.17MB CSAPP
1
Carlos Coronel, Steven Morris-Database Systems_ Design, Implementation, & Management, 2016, 12 edition
2023-03-01 18:40:06 48.97MB Carlos Coronel
1