IC仿真验证软件VCS + DVE的中文用户手册,内容详实,通俗易懂,比较适合刚接触IC验证的同学参考学习。
2024-05-03 18:36:57 6.58MB ASIC验证
1
随着红外焦平面阵列技术的快速发展,红外成像系统实现了高帧频、高分辨率、高可靠性及微型化,在目标跟踪、智能交通监控中得到了越来越多的应用,并向更加广泛的军事及民用领域扩展。实时红外图像处理系统一般会包括非均匀校正、图像增强、图像分割、区域特征提取、目标检测及跟踪等不同层次的实时图像处理算法,由于图像处理的数据量大,数据处理相关性高,因此实时红外图像处理系统必须具有强大的运算能力。目前有些红外图像处理系统使用FPGA实现可重构计算系统[1],运算速度快,但对于复杂算法的实现难度比较高,且灵活性差。大多数红外图像处理系统则采用DSP+FPGA的硬件架构[2],其中DSP负责实现图像处理算法,FPGA
2024-04-10 14:45:48 141KB
1
根据富士电机资料,汽车电子的核心是MOSFET和IGBT,无论是在引擎、戒者驱劢系统中癿发速箱控制和制劢、转向控 制中还是在车身中,都离丌开功率半导体。在传统汽车中癿劣力转向、轴劣刹车以及座椅等控制系统等,都需要加上电 机,所以传统汽车癿内置电机数量迅速增长,带劢了MOSFET癿市场增长。 新能源汽车中,除了传统汽车用到癿半导体需求之外,还需要以高压为主癿产品,如IGBT,对应癿部件有逆发器、PCT 加热器、空调控制板等。异构计算芯片是新能源汽车的“大脑”。中控芯片主要用二完成传感器信号——传感器数据— —驱劢数据——驱劢信号这样一个完整工作流程。未来主控芯片多为FPGA和ASIC。FPGA
2024-04-08 18:29:06 8.28MB 3C电子 微纳电子
1
ASIC界最经典的教材,很不错的教材,大家可以学习学习
2024-01-08 21:36:58 1.58MB ASIC
1
最近在学DC,然后找到Synopsis官方dc指导pdf文件,可以和其官方源代码配套使用,非常方便入门学习,分享给大家
2023-08-30 20:14:31 774KB ASIC DC Synopsis 官方lab指导
1
在无线通信系统中,随着传输距离的变化以及其他一些因素的影响,电波在空间传播过程中存在明显衰落,在接收机输入端的信号强度有很大的变化。因此在接收机前端必须加上一个幅度控制系统,数字式自适应增益控制(Automatic Gain Control,AGC)环路是无线通信中必不可少的,他保证了接收机在接收信号强弱十分悬殊的情况下,输出功率保持恒定,从而使后面的调制解调器和信号处理单元稳定地工作而不致饱和或电平不够。 一般,AGC环路电路有两种,分别为模拟AGC和数字AGC。前者多用于射频或中频,而后者更多地用于中频或基带。具体而言AGC环路是为了使模拟输入信号能尽量达到ADC的满刻度要求(充分利用A
1
本设计利用ADC0809作为电压采样端口,FPGA作为系统的核心器件,用LED(发光二极管)进行数码显示。
2023-04-13 13:19:13 72KB FPGA 数字电压表 集成电路 ASIC
1
apb总线,主要用于芯片设计时内部总线协议的设计及外挂设备与MCU之间的数据读取与写入
2023-03-14 10:03:01 123KB ahb asic
1
1 Introduction and Overview Thucydides Xanthopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Clock Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Some Subjective Milestones in the History of Microprocessor Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Integrating the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Clock Distribution Moves to the Forefront: The Dawn of the GHz Race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Delay Lock Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Exploiting Inductance for Oscillation and Distribution . . . . . . . . . 5 1.2.5 Variable Frequency (and Voltage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.6 Frequency Increase (or Supply Lowering) Through Resiliency . . . 6 1.3 Overview of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Modern Clock Distribution Systems Simon Tam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Definitions and Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Setup and Hold Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Clock Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Static and Dynamic Clock Uncertainties . . . . . . . . . . . . . . . . . . . . . 14 Distribution Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 Clock Distribution Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Clock Distribution Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Unconstrained Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Balanced Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Central Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4 Spines with Matched Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.5 Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.6 Hybrid Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Microprocessor Clock Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Clock Design for Test and Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Global and Local Clock Compensations. . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 Global Clock Compensation Architecture . . . . . . . . . . . . . . . . . . . . 37 2.5.3 Local Clock Compensation Architecture . . . . . . . . . . . . . . . . . . . . . 43 2.6 Elements of Clock Distribution Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.1 Clock Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.7 Clock DFX Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Optical Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 On-Die Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Locating Critical Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7.4 On-Die-Clock Shrink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8 Multiclock Domain Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.8.1 Multicore Processor Clock Distribution . . . . . . . . . . . . . . . . . . . . . . 55 2.9 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Clocked Elements James Warnock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 CSE Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.2 Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.4 Scan Design for CSEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3 Static Latch Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.1 Master–Slave Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.2 Two-Phase Level-Sensitive Latches . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.3 Pulsed-Clock Static Level-Sensitive Latches . . . . . . . . . . . . . . . . . . 78 3.4 Flip-Flop Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Sense-Amp Style Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.2 Hybrid Latch Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.3 Semi-Dynamic Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Test and Debug Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6 CSE Design for Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.1 Variability-Induced Frequency Degradation . . . . . . . . . . . . . . . . . . . 88 3.6.2 Variability-Induced Functional Failures . . . . . . . . . . . . . . . . . . . . . . 89 3.7 Reliability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7.1 Soft Error Rate Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7.2 End of Life Considerations for CSE Design . . . . . . . . . . . . . . . . . . 93 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4 Exploiting Inductance Nestoras Tzartzanis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2 Monolithic Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Spiral Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3 Inductor-Based Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.1 Differential LC VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.2 Quadrature LC VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.3 Distributed VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.4 Poly-Phase Circularly Distributed VCO . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Clock Distribution Using Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.1 Rotary Traveling-Wave Oscillator Arrays . . . . . . . . . . . . . . . . . . . . 123 4.4.2 Standing Wave Oscillator and Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.4.3 Inductor-Based Resonant Global Clock Distribution . . . . . . . . . . . 128 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 Phase Noise and Jitter Scott Meninger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 Timing Error in the Time Domain: Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.1 Phase Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2 Period Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.3 Cycle-to-Cycle Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 Timing Error in the Frequency Domain: Phase Noise . . . . . . . . . . . . . . . . . 142 5.3.1 Relationship Between Phase Noise and Jitter . . . . . . . . . . . . . . . . . 143 5.4 Frequency Domain Modeling of PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.4.1 PLL Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.4.2 PLL Intrinsic Noise: VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.4.3 PLL Intrinsic Noise: Feedback Divider . . . . . . . . . . . . . . . . . . . . . . 146 5.4.4 PLL Intrinsic Noise: Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.5 PLL Intrinsic Noise: Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4.6 PLL Intrinsic Noise: Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.7 PLL Extrinsic Noise: Reference Clock . . . . . . . . . . . . . . . . . . . . . . . 151 5.4.8 PLL Extrinsic Noise: Supply Noise . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.9 PLL Extrinsic Noise: Buffer Delay and Noise . . . . . . . . . . . . . . . . . 152 5.4.10 PLL Phase Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Some Intuition on Reference Clock Phase Noise (or Jitter) Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.4.11 Phase Noise to Period Jitter and Phase Noise to C2C Jitter . . . . . . 156 5.4.12 Phase, Period, and C2C Jitter Examples . . . . . . . . . . . . . . . . . . . . . . 159 Phase Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Period Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 C2C Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.5 Reference Clock Jitter Transfer Example: Microprocessor . . . . . . . . . . . . . 161 5.5.1 A Proposed Core Clock Methodology Using Mean Time Between Failures (MTBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.6 Non-Random Jitter Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.6.1 Reference Spurs in PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.6.2 Duty Cycle Distortion (DCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.6.3 Power Supply Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.6.4 Inter-Symbol Interference (ISI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.6.5 Including Deterministic Jitter in Analysis . . . . . . . . . . . . . . . . . . . . 172 5.7 Reference Clock Jitter Transfer Example: Serial Link . . . . . . . . . . . . . . . . . 173 5.7.1 Serial Link Budgeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.7.2 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.7.3 Serial Link Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.8 Delay Locked Loops (DLLs) and Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6 Digital Delay Lock Techniques Thucydides Xanthopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.2 What Constitutes a Digital Delay Locked Loop? . . . . . . . . . . . . . . . . . . . . . 183 6.3 An Overview of DLL Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.4 Phase Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4.1 Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 An Example of Phase Detector Failure Calculation . . . . . . . . . . . . 201 6.5 DCDL Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.5.1 Gate-Delay DCDLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Synchronous vs. Asynchronous Operation in Coarse DCDLs . . . . 207 6.5.2 Subgate-Delay DCDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.5.3 Resolution vs. Dynamic Range in DCDLs . . . . . . . . . . . . . . . . . . . . 211 6.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 6.6.1 Sensitivity to Initial Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.6.2 Dynamic Range Increase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.6.3 Stability and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.6.4 Lock Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.7 Putting it All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.8 Noise Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.9 Advanced Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.1 Duty Cycle Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.2 Clock Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.9.3 Infinite Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.9.4 Clock-Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.9.5 On-Chip Temperature Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 7 Clocking and Variation James Tschanz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.2 Variation Reduction Through Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.2.1 Skew and Jitter-Tolerant Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.2.2 Time Borrowing for Datapath Variation Reduction . . . . . . . . . . . . . 246 7.3 Variation Reduction Through Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.3.1 Manufacturing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.3.2 Active Clock Deskew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.3.3 Dynamic Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 7.4 Variation Reduction Through Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.4.1 Timing Error Detection – Error Detection Sequentials . . . . . . . . . . 262 7.4.2 Timing Error Correction and Recovery . . . . . . . . . . . . . . . . . . . . . . 266 7.4.3 Results: Guardband Reduction Through Resiliency . . . . . . . . . . . . 268 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8 Physical Design Considerations Georgios Konstadinidis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.2 Clock Skew Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.2.1 Setup Time Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8.2.2 Hold Time Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.3 Half-Cycle Setup Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.4 Multiple-Cycle Setup Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.2.5 Grid or H-Tree? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.3 Transistor Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.3.1 Channel Length Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Photolithography Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Poly Flaring and Poly Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Line Edge Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Channel Length Variation Control. . . . . . . . . . . . . . . . . . . . . . . . . . . 288 8.3.2 Dopant Fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8.3.3 Well Proximity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 8.3.4 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Stress Memorization and Tensile Stress Liner . . . . . . . . . . . . . . . . . 293 SiGe and Compressive Stress Liner . . . . . . . . . . . . . . . . . . . . . . . . . 293 Shallow Trench Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 New Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 8.3.5 Long Term Effects on Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 NBTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Hot Carrier Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 8.4 Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 8.5 Temperature Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.6 Interconnect Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 8.7 Conclusion: Clock Design and Analysis Guidelines: Putting All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 8.7.1 Clock Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 8.7.2 Minimizing Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2023-03-07 14:53:36 12.02MB clock VLSI ASIC
1
1 引言 通用串行总线 (USB) 是 Intel 公司 1996 年提出、由康柏等七家公司联合制定的一种新型接口技术。 USB 历经七年的发展,目前已经到了 2 . 0 版本。由于数据传输速率高,传输可靠,连接灵活,成本低廉,所以 USB 在 PC 领域获得了广泛的应用。USB 系统中包含的硬件和软件如图 1 所示。所有的 USB 传输事务都在 USB 系统软件控制下进行, 系统软件包括 USB 设备驱动、 USB 驱动和 USB 主控制器驱动程序。 USB 设备驱动程序负责与 USB 设备进行通信,它提供了 USB 设备驱动程序和 USB 主控制器之间的接
2023-02-16 19:46:31 94KB USB2.0 SIE ASIC
1