该 Ising 模型用于通过应用 Metropolis 算法-蒙特卡洛方法模拟磁系统(正、负或随机自旋)。 运行主文件,输入晶格大小(最好是 100),然后选择一个输入自旋作为初始配置。 设置了两个不同的温度(T=2.0 和 T=2.5)。
例如,在 T=2(低温)下使用选定的正自旋进行初始化,大多数自旋是黑色的,这是因为翻转自旋的机会很小,并且材料具有铁磁性。 对于 T=2.5 的情况,由于温度较高,它会产生自旋翻转的趋势。 因此,材料失去磁化。 自旋似乎没有对齐,由此产生的配置似乎是随机无序的。 那是因为顺磁行为。
模拟的下一部分是可观测值计算:平均磁化、平均能量、平均磁化率和比热。 为了计算平均能量和磁化强度,我们必须找到能量和磁化值变化很小的时间依赖性(能量和磁化强度随时间增加变化很小的时间)因此,我们选择精度 p 并检查间隔(应满足精度的时间步数)。 这些间隔应取决于初始配
2021-11-18 18:52:56
3KB
matlab
1