时序数据存在时序性,并且其短序列的特征存在重要程度差异性。针对时序数据特征,提出一种基于注意力机制的卷积神经网络(CNN)联合长短期记忆网络(LSTM)的神经网络预测模型,融合粗细粒度特征实现准确的时间序列预测。该模型由两部分构成:基于注意力机制的CNN,在标准CNN网络上增加注意力分支,以抽取重要细粒度特征;后端为LSTM,由细粒度特征抽取潜藏时序规律的粗粒度特征。在真实的热电联产供热数据上的实验表明,该模型比差分整合移动平均自回归、支持向量回归、CNN以及LSTM模型的预测效果更好,对比目前企业将预定量作为预测量的方法,预测缩放误差平均值(MASE)与均方根误差(RMSE)指标分别提升了89.64%和61.73%。
2021-07-31 11:17:18
914KB
论文研究
1